Optimal tuning of decentralized fractional order PID controllers for TITO process using equivalent transfer function

被引:49
|
作者
Lakshmanaprabu, S. K. [1 ]
Elhoseny, Mohamed [2 ]
Shankar, K. [3 ]
机构
[1] BS Abdur Rahman Crescent Inst Sci & Technol, Dept Elect & Instrumentat Engn, Chennai, Tamil Nadu, India
[2] Mansoura Univ, Fac Comp & Informat, Mansoura, Egypt
[3] Alagappa Univ, Dept Comp Applicat, Karaikkudi, Tamil Nadu, India
来源
关键词
Fractional order PI/PID control; TITO process; Optimal control; Decoupler; Equivalent transfer function; Bat algorithm; DESIGN; SYSTEMS;
D O I
10.1016/j.cogsys.2019.07.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a method of designing independent fractional order PI/PID controller for two interacting conical tank level (TICTL) process based on the Equivalent Transfer Function (ETF) model and simplified decoupler. The TICTL process is decomposed into independent single input single output (SISO) model using ETF. A bat optimization algorithm is utilized to independently design a diagonal fractional order PI/PID controller based on ETF model. The effectiveness of the proposed method is illustrated with simulation examples and also the experimental TICTL process utilized to validate the proposed method. (C) 2019 Published by Elsevier B.V.
引用
收藏
页码:292 / 303
页数:12
相关论文
共 50 条
  • [31] Fractional order IMC based PID controller design using Novel Bat optimization algorithm for TITO Process
    Lakshmanaprabu, S. K.
    Banu, Sabura U.
    Hemavathy, P. R.
    FIRST INTERNATIONAL CONFERENCE ON POWER ENGINEERING COMPUTING AND CONTROL (PECCON-2017 ), 2017, 117 : 1125 - 1133
  • [32] Intermediate Tuning Proposal for Fractional Order PID Controllers with Balanced Servo/Regulation Operation
    Madrigal, S.
    Arrieta, O.
    Rojas, J. D.
    Meneses, M.
    Vilanova, R.
    IFAC PAPERSONLINE, 2024, 58 (07): : 352 - 357
  • [33] Tuning the implementable structures of fractional-order PID controllers for control of FOPDT processes
    Ashjaee M.
    Tavazoei M.S.
    Scientia Iranica, 2022, 29 (2 D) : 660 - 675
  • [34] PARETO OPTIMAL ROBUST DESIGN OF FUZZY FRACTIONAL-ORDER PID CONTROLLERS
    Nariman-zadeh, Nader
    Hajiloo, Amir
    MEMS, NANO AND SMART SYSTEMS, PTS 1-6, 2012, 403-408 : 4735 - 4742
  • [35] Set-point weight tuning rules for fractional-order PID controllers
    Padula, Fabrizio
    Visioli, Antonio
    ASIAN JOURNAL OF CONTROL, 2013, 15 (03) : 678 - 690
  • [36] Design and Tuning of Fractional-order PID Controllers for Time-delayed Processes
    Edet, Emmanuel
    Katebi, Reza
    2016 UKACC 11TH INTERNATIONAL CONFERENCE ON CONTROL (CONTROL), 2016,
  • [37] Tuning the implementable structures of fractional-order PID controllers for control of FOPDT processes
    Ashjaee, M.
    Tavazoei, M. S.
    SCIENTIA IRANICA, 2022, 29 (02) : 660 - 675
  • [38] Fractional-Order PID Optimal Tuning Rule based on a FOPDT Process Model with Robustness Constraints
    Madrigal, S.
    Arrieta, O.
    Rojas, J. D.
    Meneses, M.
    Vilanova, R.
    IFAC PAPERSONLINE, 2024, 58 (07): : 358 - 363
  • [39] Estimation of a SOPDT process transfer function for PID tuning
    Veronesi, Massimiliano
    De Keyser, Robin
    Vilanova, Ramon
    Visioli, Antonio
    IFAC PAPERSONLINE, 2024, 58 (07): : 55 - 60
  • [40] Tuning of optimal fractional-order PID controller using an artificial bee colony algorithm
    Kesarkar, Ameya Anil
    Selvaganesan, N.
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2015, 3 (01): : 99 - 105