Optimal tuning of decentralized fractional order PID controllers for TITO process using equivalent transfer function

被引:49
|
作者
Lakshmanaprabu, S. K. [1 ]
Elhoseny, Mohamed [2 ]
Shankar, K. [3 ]
机构
[1] BS Abdur Rahman Crescent Inst Sci & Technol, Dept Elect & Instrumentat Engn, Chennai, Tamil Nadu, India
[2] Mansoura Univ, Fac Comp & Informat, Mansoura, Egypt
[3] Alagappa Univ, Dept Comp Applicat, Karaikkudi, Tamil Nadu, India
来源
关键词
Fractional order PI/PID control; TITO process; Optimal control; Decoupler; Equivalent transfer function; Bat algorithm; DESIGN; SYSTEMS;
D O I
10.1016/j.cogsys.2019.07.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a method of designing independent fractional order PI/PID controller for two interacting conical tank level (TICTL) process based on the Equivalent Transfer Function (ETF) model and simplified decoupler. The TICTL process is decomposed into independent single input single output (SISO) model using ETF. A bat optimization algorithm is utilized to independently design a diagonal fractional order PI/PID controller based on ETF model. The effectiveness of the proposed method is illustrated with simulation examples and also the experimental TICTL process utilized to validate the proposed method. (C) 2019 Published by Elsevier B.V.
引用
收藏
页码:292 / 303
页数:12
相关论文
共 50 条
  • [1] AUTOMATIC TUNING OF DECENTRALIZED PID CONTROLLERS FOR TITO PROCESSES
    PALMOR, ZJ
    HALEVI, Y
    KRASNEY, N
    AUTOMATICA, 1995, 31 (07) : 1001 - 1010
  • [2] Tuning rules for optimal PID and fractional-order PID controllers
    Padula, Fabrizio
    Visioli, Antonio
    JOURNAL OF PROCESS CONTROL, 2011, 21 (01) : 69 - 81
  • [3] Relay Auto Tuning of Decentralized PID Controllers for Unstable TITO Systems
    Nikita, Saxena
    Chidambaram, M.
    INDIAN CHEMICAL ENGINEER, 2018, 60 (01) : 1 - 15
  • [4] On the Use of Fractional-Order PID Controllers for TITO Processes
    Arrieta, Orlando
    Barbieri, Alessandro
    Meneses, Helber
    Padula, Fabrizio
    Vilanova, Ramon
    Visioli, Antonio
    IFAC PAPERSONLINE, 2023, 56 (02): : 3284 - 3289
  • [5] Tuning and Application of Fractional Order PID Controllers
    Yan, Zhe
    Li, Kai
    Song, Changqi
    He, Jing
    Li, Yingyan
    PROCEEDINGS OF 2013 2ND INTERNATIONAL CONFERENCE ON MEASUREMENT, INFORMATION AND CONTROL (ICMIC 2013), VOLS 1 & 2, 2013, : 955 - 958
  • [6] Web Application for PI/PID Controllers Tuning Using a Fractional-Order Process Model
    Hidalgo, J.
    Meneses, H.
    Arrieta, O.
    Vilanova, R.
    2022 26TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2022, : 663 - 668
  • [7] Tuning of fractional PID controllers by using QFT
    Cervera, Joaquin
    Banos, Alfonso
    Monje, Concha A.
    Vinagre, Blas M.
    IECON 2006 - 32ND ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS, VOLS 1-11, 2006, : 3286 - +
  • [8] Computation of Stabilizing Decentralized PI Controllers for Fractional Order TITO (FOTITO) Systems
    Bulut, Miray Gunay
    Deniz, Furkan Nur
    2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2021, : 1274 - 1280
  • [9] Design of optimal fractional-order PID controllers
    Leu, JF
    Tsay, SY
    Hwang, C
    JOURNAL OF THE CHINESE INSTITUTE OF CHEMICAL ENGINEERS, 2002, 33 (02): : 193 - 202
  • [10] Tuning guidelines for fractional order PID controllers: Rules of thumb
    Dastjerdi, Ali Ahmadi
    Saikumar, Niranjan
    HosseinNia, S. Hassan
    MECHATRONICS, 2018, 56 : 26 - 36