A dual version of Reimer's inequality and a proof of Rudich's Conjecture

被引:22
|
作者
Kahn, J [1 ]
Saks, M [1 ]
Smyth, C [1 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
关键词
Reimer's inequality; van den Berg-Kesten conjecture; Rudich's conjecture;
D O I
10.1109/CCC.2000.856739
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prole a dual version of the celebrated inequality of D. Reimer (a.k.a. the van den Berg-Kesten conjecture). We use the dual inequality to prove a combinatorial conjecture of S. Rudich motivated by questions ill cryptographic complexity: One consequence of Rudich's Conjecture is that there is art oracle relative to which one-way functions exist but one-sr ar permutations do not. The dual inequality has another combinatorial consequence which allows R. Impagliazzo and S. Rudich to prove that if P = NP then NP boolean AND coNP subset of or equal to i.o.AvgP relative to a random oracle.
引用
收藏
页码:98 / 103
页数:6
相关论文
共 50 条
  • [41] On the proof of Erdős’ inequality
    Lai-Yi Zhu
    Da-Peng Zhou
    Czechoslovak Mathematical Journal, 2017, 67 : 967 - 979
  • [42] Proof of a Hardy and Littlewood's conjecture
    Essouabri, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (07): : 557 - 562
  • [43] PROOF OF SCHUR'S CONJECTURE IN RD
    Kupavskii, Andrey B.
    Polyanskii, Alexandr
    COMBINATORICA, 2017, 37 (06) : 1181 - 1205
  • [44] Deconstructing Arsovski’s proof of Snevily’s conjecture
    Kush D.
    Resonance, 2017, 22 (9) : 879 - 887
  • [45] A new proof of Vassiliev's conjecture
    Nikonov, Igor
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2014, 23 (07)
  • [46] Proof of Moll's minimum conjecture
    Chen, William Y. C.
    Xia, Ernest X. W.
    EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (04) : 787 - 791
  • [47] A NOTE ON PROOF OF GORDON'S CONJECTURE
    Du, Kun
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (03) : 699 - 715
  • [48] 103.26 A proof of Clarke's conjecture
    Kilic, Emrah
    Arikan, Talha
    MATHEMATICAL GAZETTE, 2019, 103 (557): : 346 - 352
  • [49] A NEW PROOF OF FRIEDMAN'S CONJECTURE
    Yu, Liang
    BULLETIN OF SYMBOLIC LOGIC, 2011, 17 (03) : 455 - 461
  • [50] A proof of the extended Duval's conjecture
    Holub, S
    THEORETICAL COMPUTER SCIENCE, 2005, 339 (01) : 61 - 67