A dual version of Reimer's inequality and a proof of Rudich's Conjecture

被引:22
|
作者
Kahn, J [1 ]
Saks, M [1 ]
Smyth, C [1 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
关键词
Reimer's inequality; van den Berg-Kesten conjecture; Rudich's conjecture;
D O I
10.1109/CCC.2000.856739
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prole a dual version of the celebrated inequality of D. Reimer (a.k.a. the van den Berg-Kesten conjecture). We use the dual inequality to prove a combinatorial conjecture of S. Rudich motivated by questions ill cryptographic complexity: One consequence of Rudich's Conjecture is that there is art oracle relative to which one-way functions exist but one-sr ar permutations do not. The dual inequality has another combinatorial consequence which allows R. Impagliazzo and S. Rudich to prove that if P = NP then NP boolean AND coNP subset of or equal to i.o.AvgP relative to a random oracle.
引用
收藏
页码:98 / 103
页数:6
相关论文
共 50 条
  • [21] A proof of Wright's conjecture
    van den Berg, Jan Bouwe
    Jaquette, Jonathan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (12) : 7412 - 7462
  • [22] A proof of Ringel’s conjecture
    R. Montgomery
    A. Pokrovskiy
    B. Sudakov
    Geometric and Functional Analysis, 2021, 31 : 663 - 720
  • [23] A proof of Higgins's conjecture
    Braun, G
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 70 (02) : 207 - 212
  • [24] PROOF OF WANG'S CONJECTURE
    杨义先
    Science Bulletin, 1990, (04) : 350 - 352
  • [25] On the Proof of Lin's Conjecture
    Hu, Honggang
    Shao, Shuai
    Gong, Guang
    Helleseth, Tor
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 1822 - 1826
  • [26] A proof of Onsager's conjecture
    Isett, Philip
    ANNALS OF MATHEMATICS, 2018, 188 (03) : 871 - 963
  • [27] A proof of snevily’s conjecture
    Bodan Arsovski
    Israel Journal of Mathematics, 2011, 182 : 505 - 508
  • [28] A proof of Nogura's conjecture
    Todorcevic, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (12) : 3919 - 3923
  • [29] A proof of Lukarevski's conjecture
    Nguyen Xuan Tho
    MATHEMATICAL GAZETTE, 2022, 106 (565): : 143 - +
  • [30] A proof of snevily's conjecture
    Arsovski, Bodan
    ISRAEL JOURNAL OF MATHEMATICS, 2011, 182 (01) : 505 - 508