An O(n+m)-time algorithm for finding a minimum-weight dominating set in a permutation graph

被引:11
|
作者
Rhee, C
Liang, YD
Dhall, SK
Lakshmivarahan, S
机构
[1] INDIANA UNIV PURDUE UNIV, DEPT COMP SCI, FT WAYNE, IN 46805 USA
[2] UNIV OKLAHOMA, SCH COMP SCI, NORMAN, OK 73019 USA
关键词
algorithm; dominating set; permutation graph;
D O I
10.1137/S0097539794200383
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Farber and Keil [Algorithmica, 4 (1989), pp. 221-236] presented an O(n(3))-time algorithm for finding a minimum-weight dominating set in permutation graphs. This result was improved to O(n(2) log(2) n) by Tsai and Hsu [SIGAL '90 Algorithms, Lecture Notes in Computer Science, Springer-Verlag, New York, 1990, pp. 109-117] and to O(n(n + m)) by the authors of this paper [Inform. Process. Lett., 37 (1991), pp. 219-224], respectively. In this paper, we introduce a new faster algorithm that takes only O(n + rn) time to solve the same problem, where m is the number of edges in a graph of n vertices.
引用
收藏
页码:404 / 419
页数:16
相关论文
共 50 条
  • [41] A 5+ε-approximation algorithm for minimum weighted dominating set in unit disk graph
    Dai, Decheng
    Yu, Changyuan
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (8-10) : 756 - 765
  • [42] A linear time algorithm for finding all hinge vertices of a permutation graph
    Ho, TY
    Wang, YL
    Juan, MT
    INFORMATION PROCESSING LETTERS, 1996, 59 (02) : 103 - 107
  • [43] Finding a Minimum-depth Embedding of a Planar Graph in O(n 4) Time
    Angelini, Patrizio
    Di Battista, Giuseppe
    Patrignani, Maurizio
    ALGORITHMICA, 2011, 60 (04) : 890 - 937
  • [44] A Fast Local Search Algorithm for Minimum Weight Dominating Set Problem on Massive Graphs
    Wang, Yiyuan
    Cai, Shaowei
    Chen, Jiejiang
    Yin, Minghao
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 1514 - 1522
  • [45] A heuristic algorithm for minimum connected dominating set with maximal weight in ad hoc networks
    Yan, XF
    Sun, YG
    Wang, YL
    GRID AND COOPERATIVE COMPUTING, PT 2, 2004, 3033 : 719 - 722
  • [46] A polynomial algorithm for minimum-weight feedback vertex set problem in series-parallel graphs
    Zhang, SQ
    Li, GJ
    6TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL X, PROCEEDINGS: MOBILE/WIRELESS COMPUTING AND COMMUNICATION SYSTEMS II, 2002, : 72 - 77
  • [47] AN EFFICIENT ALGORITHM FOR FINDING A MAXIMUM WEIGHT INDEPENDENT SET OF A CIRCLE GRAPH
    GOLDSCHMIDT, O
    TAKVORIAN, A
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1994, E77A (10) : 1672 - 1674
  • [48] Minimum-weight spanning tree construction in O(log log n) communication rounds
    Lotker, Z
    Patt-Shamir, B
    Pavlov, E
    Peleg, D
    SIAM JOURNAL ON COMPUTING, 2005, 35 (01) : 120 - 131
  • [49] Finding a Minimum-depth Embedding of a Planar Graph in O(n4) Time
    Patrizio Angelini
    Giuseppe Di Battista
    Maurizio Patrignani
    Algorithmica, 2011, 60 : 890 - 937
  • [50] A randomized population-based iterated greedy algorithm for the minimum weight dominating set problem
    Bouamama, Salim
    Blum, Christian
    2015 6TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2015, : 7 - 12