An O(n+m)-time algorithm for finding a minimum-weight dominating set in a permutation graph

被引:11
|
作者
Rhee, C
Liang, YD
Dhall, SK
Lakshmivarahan, S
机构
[1] INDIANA UNIV PURDUE UNIV, DEPT COMP SCI, FT WAYNE, IN 46805 USA
[2] UNIV OKLAHOMA, SCH COMP SCI, NORMAN, OK 73019 USA
关键词
algorithm; dominating set; permutation graph;
D O I
10.1137/S0097539794200383
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Farber and Keil [Algorithmica, 4 (1989), pp. 221-236] presented an O(n(3))-time algorithm for finding a minimum-weight dominating set in permutation graphs. This result was improved to O(n(2) log(2) n) by Tsai and Hsu [SIGAL '90 Algorithms, Lecture Notes in Computer Science, Springer-Verlag, New York, 1990, pp. 109-117] and to O(n(n + m)) by the authors of this paper [Inform. Process. Lett., 37 (1991), pp. 219-224], respectively. In this paper, we introduce a new faster algorithm that takes only O(n + rn) time to solve the same problem, where m is the number of edges in a graph of n vertices.
引用
收藏
页码:404 / 419
页数:16
相关论文
共 50 条
  • [31] An optimal algorithm to find minimum k-hop connected dominating set of permutation graphs
    Adhya, Amita Samanta
    Mondal, Sukumar
    Barman, Sambhu Charan
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (04)
  • [32] LINEAR-TIME APPROXIMATION ALGORITHMS FOR FINDING THE MINIMUM-WEIGHT PERFECT MATCHING ON A PLANE
    IRI, M
    MUROTA, K
    MATSUI, S
    INFORMATION PROCESSING LETTERS, 1981, 12 (04) : 206 - 209
  • [33] Exponential time algorithms for the minimum dominating set problem on some graph classes
    Gaspers, Serge
    Kratsch, Dieter
    Liedloff, Mathieu
    ALGORITHM THEORY - SWAT 2006, PROCEEDINGS, 2006, 4059 : 148 - 159
  • [34] An O*(1.1939n) Time Algorithm for Minimum Weighted Dominating Induced Matching
    Min Chih Lin
    Mizrahi, Michel J.
    Szwarcfiter, Jayme L.
    ALGORITHMS AND COMPUTATION, 2013, 8283 : 558 - 567
  • [35] A 2-approximation algorithm for the minimum weight edge dominating set problem
    Fujito, T
    Nagamochi, H
    DISCRETE APPLIED MATHEMATICS, 2002, 118 (03) : 199 - 207
  • [36] Exponential Time Algorithms for the Minimum Dominating Set Problem on Some Graph Classes
    Gaspers, Serge
    Kratsch, Dieter
    Liedloff, Mathieu
    Todinca, Ioan
    ACM TRANSACTIONS ON ALGORITHMS, 2009, 6 (01)
  • [37] Finding a minimum feedback vertex set in time O(1.7548n)
    Fomin, Fedor V.
    Gaspers, Serge
    Pyatkin, Artem V.
    PARAMETERIZED AND EXACT COMPUTATION, PROCEEDINGS, 2006, 4169 : 184 - 191
  • [38] Improved Memetic Algorithm for Solving the Minimum Weight Vertex Independent Dominating Set
    Zhou, Yupeng
    Li, Jinshu
    Liu, Yang
    Lv, Shuai
    Lai, Yong
    Wang, Jianan
    MATHEMATICS, 2020, 8 (07)
  • [39] Breaking the O(ln n) Barrier: An F hanced Approximation Algorithm for Fault-Tolerant Minimum Weight connected Dominating Set
    Zhou, Jiao
    Zhang, Zhao
    Tang, Shaojie
    Huang, Xiaohui
    Duc, Ding-Zhu
    INFORMS JOURNAL ON COMPUTING, 2018, 30 (02) : 225 - 235
  • [40] An O(n+m) Certifying Triconnnectivity Algorithm for Hamiltonian Graphs
    Amr Elmasry
    Kurt Mehlhorn
    Jens M. Schmidt
    Algorithmica, 2012, 62 : 754 - 766