Classification of Shoulder X-ray Images with Deep Learning Ensemble Models

被引:21
|
作者
Uysal, Fatih [1 ]
Hardalac, Firat [1 ]
Peker, Ozan [1 ]
Tolunay, Tolga [2 ]
Tokgoz, Nil [3 ]
机构
[1] Gazi Univ, Fac Engn, Dept Elect & Elect Engn, TR-06570 Ankara, Turkey
[2] Gazi Univ, Fac Med, Dept Orthopaed & Traumatol, TR-06570 Ankara, Turkey
[3] Gazi Univ, Fac Med, Dept Radiol, TR-06570 Ankara, Turkey
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 06期
关键词
biomedical image classification; bone fractures; deep learning; ensemble learning; shoulder; transfer learning; X-ray; ABNORMALITY DETECTION;
D O I
10.3390/app11062723
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fractures occur in the shoulder area, which has a wider range of motion than other joints in the body, for various reasons. To diagnose these fractures, data gathered from X-radiation (X-ray), magnetic resonance imaging (MRI), or computed tomography (CT) are used. This study aims to help physicians by classifying shoulder images taken from X-ray devices as fracture/non-fracture with artificial intelligence. For this purpose, the performances of 26 deep learning-based pre-trained models in the detection of shoulder fractures were evaluated on the musculoskeletal radiographs (MURA) dataset, and two ensemble learning models (EL1 and EL2) were developed. The pre-trained models used are ResNet, ResNeXt, DenseNet, VGG, Inception, MobileNet, and their spinal fully connected (Spinal FC) versions. In the EL1 and EL2 models developed using pre-trained models with the best performance, test accuracy was 0.8455, 0.8472, Cohen's kappa was 0.6907, 0.6942 and the area that was related with fracture class under the receiver operating characteristic (ROC) curve (AUC) was 0.8862, 0.8695. As a result of 28 different classifications in total, the highest test accuracy and Cohen's kappa values were obtained in the EL2 model, and the highest AUC value was obtained in the EL1 model.
引用
收藏
页数:33
相关论文
共 50 条
  • [31] Computer-aided diagnostic for classifying chest X-ray images using deep ensemble learning
    Lara Visuña
    Dandi Yang
    Javier Garcia-Blas
    Jesus Carretero
    BMC Medical Imaging, 22
  • [32] Covid-19 Diagnosis Using a Deep Learning Ensemble Model with Chest X-Ray Images
    Türk F.
    Computer Systems Science and Engineering, 2023, 45 (02): : 1357 - 1373
  • [33] Computer-aided diagnostic for classifying chest X-ray images using deep ensemble learning
    Visuna, Lara
    Yang, Dandi
    Garcia-Blas, Javier
    Carretero, Jesus
    BMC MEDICAL IMAGING, 2022, 22 (01)
  • [34] Deep Ensemble Models with Multiscale Lung-Focused Patches for Pneumonia Classification on Chest X-ray
    Kim, Yoon Jo
    An, Jinseo
    Hong, Helen
    MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [35] Deep Learning and Binary Relevance Classification of Multiple Diseases using Chest X-Ray images
    Blais, Marc-Andre
    Akhloufi, Moulay A.
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 2794 - 2797
  • [36] Deep multi-instance transfer learning for pneumothorax classification in chest X-ray images
    Tian, Yuchi
    Wang, Jiawei
    Yang, Wenjie
    Wang, Jun
    Qian, Dahong
    MEDICAL PHYSICS, 2022, 49 (01) : 231 - 243
  • [37] Y Covid-19 Classification Using Deep Learning in Chest X-Ray Images
    Karhan, Zehra
    Akal, Fuat
    2020 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2020,
  • [38] Deep Learning Approach for Automatic Classification of X-Ray Images using Convolutional Neural Network
    Mondal, Sushavan
    Agarwal, Krishna
    Rashid, Mamoon
    2019 FIFTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP 2019), 2019, : 326 - 331
  • [39] Modeling of deep learning enabled lung disease detection and classification on chest X-ray images
    Saturi, Swapna
    Banda, Sandhya
    INTERNATIONAL JOURNAL OF HEALTHCARE MANAGEMENT, 2022,
  • [40] Eichner classification based on panoramic X-ray images using deep learning: A pilot study
    Otsuka, Yuta
    Indo, Hiroko
    Kawashima, Yusuke
    Tanaka, Tatsuro
    Kono, Hiroshi
    Kikuchi, Masafumi
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2024, 35 (04) : 377 - 386