Deep Ensemble Models with Multiscale Lung-Focused Patches for Pneumonia Classification on Chest X-ray

被引:0
|
作者
Kim, Yoon Jo [1 ]
An, Jinseo [1 ]
Hong, Helen [1 ]
机构
[1] Seoul Womens Univ, Dept Software Convergence, 621 Hwarang Ro, Seoul 01797, South Korea
基金
新加坡国家研究基金会;
关键词
Chest X-ray; Pneumonia; Classification; Convolutional neural network; Multiscale patches; Ensemble; Lung-focused; Attention;
D O I
10.1117/12.2610968
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Recently, deep learning-based pneumonia classification has shown excellent performance in chest X-ray(CXR) images, but when analyzing classification results through visualization such as Grad-CAM, deep learning models have limitations in classifying by observing the outside of the lungs. To overcome these limitations, we propose a deep ensemble model with multiscale lung-focused patches for the classification of pneumonia. First, Contrast Limited Adaptive Histogram Equalization is applied to appropriately increase the local contrast while maintaining important features. Second, lung segmentation and multiscale lung-focused patches generation is performed to prevent pneumonia diagnosis from external lung region information. Third, we use a classification network with a Convolutional Block Attention Module to make the model to focus on meaningful regions and ensemble single models trained on large, middle and small-sized patches, respectively. For the evaluation of the proposed classification method, the model was trained on 5,216 pediatric CXRs and tested 624 images. Deep ensemble model trained on large and middle-sized patches showed the best performance with an accuracy of 92%, which is a 15%p improvement over the original single model.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Pneumonia detection in chest X-ray images using an ensemble of deep learning models
    Kundu, Rohit
    Das, Ritacheta
    Geem, Zong Woo
    Han, Gi-Tae
    Sarkar, Ram
    PLOS ONE, 2021, 16 (09):
  • [2] Deep Ensemble Model for Classification of Novel Coronavirus in Chest X-Ray Images
    Ahmad, Fareed
    Farooq, Amjad
    Ghani, Muhammad Usman
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [3] Classification of Shoulder X-ray Images with Deep Learning Ensemble Models
    Uysal, Fatih
    Hardalac, Firat
    Peker, Ozan
    Tolunay, Tolga
    Tokgoz, Nil
    APPLIED SCIENCES-BASEL, 2021, 11 (06):
  • [4] Diagnosis of Pediatric Pneumonia with Ensemble of Deep Convolutional Neural Networks in Chest X-Ray Images
    Ayan, Enes
    Karabulut, Bergen
    Unver, Halil Murat
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (02) : 2123 - 2139
  • [5] Pneumonia Detection on Chest X-ray Images Using Ensemble of Deep Convolutional Neural Networks
    Mabrouk, Alhassan
    Diaz Redondo, Rebeca P.
    Dahou, Abdelghani
    Abd Elaziz, Mohamed
    Kayed, Mohammed
    APPLIED SCIENCES-BASEL, 2022, 12 (13):
  • [6] Diagnosis of Pediatric Pneumonia with Ensemble of Deep Convolutional Neural Networks in Chest X-Ray Images
    Enes Ayan
    Bergen Karabulut
    Halil Murat Ünver
    Arabian Journal for Science and Engineering, 2022, 47 : 2123 - 2139
  • [7] Deep Learning Models to Predict Fatal Pneumonia Using Chest X-Ray Images
    Anai, Satoshi
    Hisasue, Junko
    Takaki, Yoichi
    Hara, Naohiko
    CANADIAN RESPIRATORY JOURNAL, 2022, 2022
  • [8] A comparison of deep learning models for pneumonia detection from chest x-ray images
    Kadiroglu, Zehra
    Deniz, Erkan
    Senyigit, Abdurrahman
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2024, 39 (02): : 729 - 740
  • [9] Deep Learning Models for Pneumonia Identification and Classification Based on X-Ray Images
    Naralasetti, Veeranjaneyulu
    Shaik, Reshmi Khadherbhi
    Katepalli, Gayatri
    Bodapati, Jyostna Devi
    TRAITEMENT DU SIGNAL, 2021, 38 (03) : 903 - 909
  • [10] Ensemble of Patches for COVID-19 X-Ray Image Classification
    Chen, Thiago Dong
    de Oliveira, Gabriel Bianchin
    Dias, Zanoni
    ICAART: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 3, 2022, : 561 - 567