(p,h)-Convex Functions Associated with Hadamard and Fejer-Hadamard Inequalities via k-Fractional Integral Operators

被引:0
|
作者
Zhang, Xiujun [1 ]
Farid, Ghulam [2 ]
Demirel, Ayse Kuebra [3 ]
Jung, Chahn Yong [4 ]
机构
[1] Chengdu Univ, Sch Comp Sci, Chengdu, Peoples R China
[2] COMSATS Univ Islamabad, Attock Campus, Attock Campus, Islamabad, Pakistan
[3] Ordu Univ, Ordu, Turkey
[4] Gyeongsang Natl Univ, Dept Business Adm, Jinju 52828, South Korea
关键词
BOUNDS;
D O I
10.1155/2022/3832330
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, generalized versions of the k-fractional Hadamard and Fejer-Hadamard inequalities are constructed. To obtain the generalized versions of these inequalities, k-fractional integral operators including the well-known Mittag-Leffler function are utilized. The class of (p,h)-convex functions for Hadamard-type inequalities give the generalizations of results which have been proved in literature for p-convex, h-convex, and several functions deducible from these two classes.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] k-FRACTIONAL INTEGRAL INEQUALITIES FOR HARMONICALLY CONVEX FUNCTIONS VIA CAPUTO k-FRACTIONAL DERIVATIVES
    Waheed, Asif
    Farid, Ghulam
    Rehman, Atiq Ur
    Ayub, Waqas
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 10 (01): : 55 - 67
  • [42] Hermite-Hadamard and Hermite-Hadamard-Fejer Type Inequalities Involving Fractional Integral Operators
    Set, Erhan
    Akdemir, Ahmet Ocak
    Alan, Emrullah Aykan
    FILOMAT, 2019, 33 (08) : 2367 - 2380
  • [43] Several Integral Inequalities of Hermite-Hadamard Type Related to k-Fractional Conformable Integral Operators
    Tariq, Muhammad
    Sahoo, Soubhagya Kumar
    Ahmad, Hijaz
    Sitthiwirattham, Thanin
    Soontharanon, Jarunee
    SYMMETRY-BASEL, 2021, 13 (10):
  • [44] New Refinements of the Inequalities of Hermite-Hadamard-Fejer Type via Fractional Integral Operators
    Budak, Huseyin
    Sarikaya, Mehmet Zeki
    Yildirim, Huseyin
    1ST INTERNATIONAL CONFERENCE ON MATHEMATICAL AND RELATED SCIENCES (ICMRS 2018), 2018, 1991
  • [45] On Quantum Hermite-Hadamard-Fejer Type Integral Inequalities via Uniformly Convex Functions
    Barsam, Hasan
    Mirzadeh, Somayeh
    Sayyari, Yamin
    Ciurdariu, Loredana
    FRACTAL AND FRACTIONAL, 2025, 9 (02)
  • [46] On new inequalities of Hermite-Hadamard-Fejer type for convex functions via fractional integrals
    Set, Erhan
    Iscan, Imdat
    Sarikaya, M. Zeki
    Ozdemir, M. Emin
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 : 875 - 881
  • [47] SOME k-FRACTIONAL INTEGRAL INEQUALITIES FOR p-CONVEX FUNCTIONS
    Mehreen, Naila
    Anwar, Matloob
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2024, 48 (01): : 25 - 39
  • [48] On Refinements of Hermite-Hadamard-Fejer Type Inequalities for Fractional Integral Operators
    Ertugral, Fatma
    Sarikaya, Mehmet Zeki
    Budak, Huseyin
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2018, 13 (01): : 426 - 442
  • [49] ON THE HERMITE-HADAMARD INEQUALITIES FOR CONVEX FUNCTIONS VIA HADAMARD FRACTIONAL INTEGRALS
    Peng, Shan
    Wei, Wei
    Wang, JinRong
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2014, 29 (01): : 55 - 75
  • [50] Generalization of the Fuzzy Fejer-Hadamard Inequalities for Non-Convex Functions over a Rectangle Plane
    Alohali, Hanan
    Breaz, Valer-Daniel
    Alsalami, Omar Mutab
    Cotirla, Luminita-Ioana
    Alamer, Ahmed
    AXIOMS, 2024, 13 (10)