On Quantum Hermite-Hadamard-Fejer Type Integral Inequalities via Uniformly Convex Functions

被引:1
|
作者
Barsam, Hasan [1 ]
Mirzadeh, Somayeh [2 ]
Sayyari, Yamin [3 ]
Ciurdariu, Loredana [4 ]
机构
[1] Univ Jiroft, Fac Sci, Dept Math, POB 78671-61167, Jiroft, Iran
[2] Univ Hormozgan, Dept Math, POB 3995, Bandar Abbas, Iran
[3] Sirjan Univ Technol, Dept Math, POB 11155-9415, Sirjan, Iran
[4] Politehn Univ Timisoara, Dept Math, Timisoara 300006, Romania
关键词
Hermite-Hadamard inequality; <italic>q</italic>-integral inequality; <italic>q</italic>-calculus; uniformly convex function; MIDPOINT TYPE INEQUALITIES; RESPECT;
D O I
10.3390/fractalfract9020108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main goal of this study is to provide new q-Fejer and q-Hermite-Hadamard type integral inequalities for uniformly convex functions and functions whose second quantum derivatives in absolute values are uniformly convex. Two basic inequalities as power mean inequality and Holder's inequality are used in demonstrations. Some particular functions are chosen to illustrate the investigated results by two examples analyzed and the result obtained have been graphically visualized.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Conformable integral version of Hermite-Hadamard-Fejer inequalities via η-convex functions
    Khurshid, Yousaf
    Khan, Muhammad Adil
    Chu, Yu-Ming
    AIMS MATHEMATICS, 2020, 5 (05): : 5106 - 5120
  • [2] Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals
    Iscan, Imdat
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2015, 60 (03): : 355 - 366
  • [3] On new inequalities of Hermite-Hadamard-Fejer type for convex functions via fractional integrals
    Set, Erhan
    Iscan, Imdat
    Sarikaya, M. Zeki
    Ozdemir, M. Emin
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 : 875 - 881
  • [4] Some Hermite-Hadamard-Fejer Type Integral Inequalities for Differentiable η-Convex Functions with Applications
    Delavar, M. Rostamian
    De La Sen, M.
    JOURNAL OF MATHEMATICS, 2017, 2017
  • [5] ON NEW HERMITE-HADAMARD-FEJER TYPE INEQUALITIES FOR HARMONICALLY QUASI CONVEX FUNCTIONS
    Turhan, Sercan
    Iscan, Imdat
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 734 - 749
  • [6] Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for p-convex functions via new fractional conformable integral operators
    Mehreen, Naila
    Anwar, Matloob
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2019, 19 (04): : 230 - 240
  • [7] New Hermite-Hadamard-Fejer type inequalities for GA-convex functions
    Maden, Selahattin
    Turhan, Sercan
    Iscan, Imdat
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016, 2016, 1726
  • [8] Hermite-Hadamard-Fejer Type Inequalities for p-Convex Functions via Fractional Integrals
    Kunt, Mehmet
    Iscan, Imdat
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A4): : 2079 - 2089
  • [9] On new inequalities of Hermite-Hadamard-Fejer type for harmonically convex functions via fractional integrals
    Kunt, Mehmet
    Iscan, Imdat
    Yazici, Nazli
    Gozutok, Ugur
    SPRINGERPLUS, 2016, 5
  • [10] Hermite-Hadamard-Fejer type inequalities
    Yaldiz, Hatice
    Sarikaya, Mehmet Zeki
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2018, 21 (7-8) : 1547 - 1561