Assessment of Single Cell RNA-Seq Normalization Methods

被引:7
|
作者
Ding, Bo [1 ]
Zheng, Lina [1 ]
Wang, Wei [1 ,2 ]
机构
[1] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Cellular & Mol Med, La Jolla, CA 92093 USA
来源
G3-GENES GENOMES GENETICS | 2017年 / 7卷 / 07期
基金
美国国家卫生研究院;
关键词
normalization; scRNA; statistical index; DIFFERENTIAL EXPRESSION ANALYSIS; HETEROGENEITY; NOISE;
D O I
10.1534/g3.117.040683
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
We have assessed the performance of seven normalization methods for single cell RNA-seq using data generated from dilution of RNA samples. Our analyses showed that methods considering spike-in External RNA Control Consortium (ERCC) RNA molecules significantly outperformed those not considering ERCCs. This work provides a guidance of selecting normalization methods to remove technical noise in single cell RNA-seq data.
引用
收藏
页码:2039 / 2045
页数:7
相关论文
共 50 条
  • [41] Correlation Imputation for Single-Cell RNA-seq
    Gan, Luqin
    Vinci, Giuseppe
    Allen, Genevera I.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (05) : 465 - 482
  • [42] Single-cell RNA-seq—now with protein
    Vesna Todorovic
    Nature Methods, 2017, 14 : 1028 - 1029
  • [43] Heterogeneity in glioma dissected by single cell RNA-seq
    Tirosh, Itay
    CANCER SCIENCE, 2022, 113
  • [44] PRECISION AND ACCURACY IN SINGLE-CELL RNA-SEQ
    Dai, Rujia
    Zhang, Ming
    Chu, Tianyao
    Kopp, Richard
    Zhang, Chunling
    Liu, Kefu
    Wang, Yue
    Wang, Xusheng
    Chen, Chao
    Liu, Chunyu
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2024, 87 : 21 - 21
  • [45] Emerging deep learning methods for single-cell RNA-seq data analysis
    Zheng, Jie
    Wang, Ke
    QUANTITATIVE BIOLOGY, 2019, 7 (04) : 247 - 254
  • [46] Tuning parameters of dimensionality reduction methods for single-cell RNA-seq analysis
    Felix Raimundo
    Celine Vallot
    Jean-Philippe Vert
    Genome Biology, 21
  • [47] Single-cell RNA-seq methods to interrogate virus-host interactions
    Kalani Ratnasiri
    Aaron J. Wilk
    Madeline J. Lee
    Purvesh Khatri
    Catherine A. Blish
    Seminars in Immunopathology, 2023, 45 : 71 - 89
  • [48] Crafted experiments to evaluate feature selection methods for single cell RNA-seq data
    Liu, Siyao
    Corcoran, David
    Garcia-Recio, Susana
    Perou, Charles
    Marron, J. S.
    CANCER RESEARCH, 2024, 84 (07)
  • [49] Tuning parameters of dimensionality reduction methods for single-cell RNA-seq analysis
    Raimundo, Felix
    Vallot, Celine
    Vert, Jean-Philippe
    GENOME BIOLOGY, 2020, 21 (01)
  • [50] Computational analysis of alternative polyadenylation from standard RNA-seq and single-cell RNA-seq data
    Gao, Yipeng
    Li, Wei
    MRNA 3' END PROCESSING AND METABOLISM, 2021, 655 : 225 - 243