Assessment of Single Cell RNA-Seq Normalization Methods

被引:7
|
作者
Ding, Bo [1 ]
Zheng, Lina [1 ]
Wang, Wei [1 ,2 ]
机构
[1] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Cellular & Mol Med, La Jolla, CA 92093 USA
来源
G3-GENES GENOMES GENETICS | 2017年 / 7卷 / 07期
基金
美国国家卫生研究院;
关键词
normalization; scRNA; statistical index; DIFFERENTIAL EXPRESSION ANALYSIS; HETEROGENEITY; NOISE;
D O I
10.1534/g3.117.040683
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
We have assessed the performance of seven normalization methods for single cell RNA-seq using data generated from dilution of RNA samples. Our analyses showed that methods considering spike-in External RNA Control Consortium (ERCC) RNA molecules significantly outperformed those not considering ERCCs. This work provides a guidance of selecting normalization methods to remove technical noise in single cell RNA-seq data.
引用
收藏
页码:2039 / 2045
页数:7
相关论文
共 50 条
  • [21] Evaluating imputation methods for single-cell RNA-seq data
    Cheng, Yi
    Ma, Xiuli
    Yuan, Lang
    Sun, Zhaoguo
    Wang, Pingzhang
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [22] Comparative Analysis of Single-Cell RNA-seq Cluster Methods
    Fang, Jingwen
    Yin, Zhaohua
    Guo, Chuang
    2ND INTERNATIONAL CONFERENCE ON FRONTIERS OF BIOLOGICAL SCIENCES AND ENGINEERING (FSBE 2019), 2020, 2208
  • [23] A Survey on Methods for Predicting Polyadenylation Sites from DNA Sequences, Bulk RNA-seq, and Single-cell RNA-seq
    Ye, Wenbin
    Lian, Qiwei
    Ye, Congting
    Wu, Xiaohui
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2023, 21 (01) : 67 - 83
  • [24] NORMSEQ: a tool for evaluation, selection and visualization of RNA-Seq normalization methods
    Scheepbouwer, Chantal
    Hackenberg, Michael
    van Eijndhoven, Monique A. J.
    Gerber, Alan
    Pegtel, Michiel
    Gomez-Martin, Cristina
    NUCLEIC ACIDS RESEARCH, 2023, 51 (W1) : W372 - W378
  • [25] NVT: a fast and simple tool for the assessment of RNA-seq normalization strategies
    Eder, Thomas
    Grebien, Florian
    Rattei, Thomas
    BIOINFORMATICS, 2016, 32 (23) : 3682 - 3684
  • [26] Dissecting glioblastoma by single cell RNA-seq
    Hara, Toshi
    Chanoch, Rony
    Suva, Mario
    Tirosh, Itay
    CANCER RESEARCH, 2020, 80 (21)
  • [27] Assessment of statistical methods from single cell, bulk RNA-seq, and metagenomics applied to microbiome data
    Calgaro, Matteo
    Romualdi, Chiara
    Waldron, Levi
    Risso, Davide
    Vitulo, Nicola
    GENOME BIOLOGY, 2020, 21 (01)
  • [28] Assessment of statistical methods from single cell, bulk RNA-seq, and metagenomics applied to microbiome data
    Matteo Calgaro
    Chiara Romualdi
    Levi Waldron
    Davide Risso
    Nicola Vitulo
    Genome Biology, 21
  • [29] Cardiovascular utility of single cell RNA-Seq
    Safabakhsh, Sina
    Ma, Wei Feng
    Miller, Clint L. L.
    Laksman, Zachary
    CURRENT OPINION IN CARDIOLOGY, 2023, 38 (03) : 193 - 200
  • [30] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Peng, Tao
    Zhu, Qin
    Yin, Penghang
    Tan, Kai
    GENOME BIOLOGY, 2019, 20 (1)