Evaluation of Three Machine Learning Algorithms for the Automatic Classification of EMG Patterns in Gait Disorders

被引:25
|
作者
Fricke, Christopher [1 ]
Alizadeh, Jalal [1 ,2 ]
Zakhary, Nahrin [1 ]
Woost, Timo B. [1 ,3 ]
Bogdan, Martin [2 ]
Classen, Joseph [1 ]
机构
[1] Univ Hosp Leipzig, Dept Neurol, Leipzig, Germany
[2] Univ Leipzig, Fac Math & Comp Sci, Leipzig, Germany
[3] Univ Med Ctr Hamburg Eppendorf UKE, Ctr Psychosocial Med, Dept Psychiat & Psychotherapy, Hamburg, Germany
来源
FRONTIERS IN NEUROLOGY | 2021年 / 12卷
关键词
machine learning; gait disorder classification; convolutional neural network; support vector machine; k nearest neighbor; MUSCLE ACTIVATION PATTERNS; CONVOLUTIONAL NEURAL-NETWORKS; SUPPORT VECTOR MACHINE; CLINICAL-DIAGNOSIS; FALLS; RECOGNITION; WALKING; COORDINATION; ACCURACY; CHILDREN;
D O I
10.3389/fneur.2021.666458
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Gait disorders are common in neurodegenerative diseases and distinguishing between seemingly similar kinematic patterns associated with different pathological entities is a challenge even for the experienced clinician. Ultimately, muscle activity underlies the generation of kinematic patterns. Therefore, one possible way to address this problem may be to differentiate gait disorders by analyzing intrinsic features of muscle activations patterns. Here, we examined whether it is possible to differentiate electromyography (EMG) gait patterns of healthy subjects and patients with different gait disorders using machine learning techniques. Nineteen healthy volunteers (9 male, 10 female, age 28.2 +/- 6.2 years) and 18 patients with gait disorders (10 male, 8 female, age 66.2 +/- 14.7 years) resulting from different neurological diseases walked down a hallway 10 times at a convenient pace while their muscle activity was recorded via surface EMG electrodes attached to 5 muscles of each leg (10 channels in total). Gait disorders were classified as predominantly hypokinetic (n = 12) or ataxic (n = 6) gait by two experienced raters based on video recordings. Three different classification methods (Convolutional Neural Network-CNN, Support Vector Machine-SVM, K-Nearest Neighbors-KNN) were used to automatically classify EMG patterns according to the underlying gait disorder and differentiate patients and healthy participants. Using a leave-one-out approach for training and evaluating the classifiers, the automatic classification of normal and abnormal EMG patterns during gait (2 classes: "healthy" and "patient") was possible with a high degree of accuracy using CNN (accuracy 91.9%), but not SVM (accuracy 67.6%) or KNN (accuracy 48.7%). For classification of hypokinetic vs. ataxic vs. normal gait (3 classes) best results were again obtained for CNN (accuracy 83.8%) while SVM and KNN performed worse (accuracy SVM 51.4%, KNN 32.4%). These results suggest that machine learning methods are useful for distinguishing individuals with gait disorders from healthy controls and may help classification with respect to the underlying disorder even when classifiers are trained on comparably small cohorts. In our study, CNN achieved higher accuracy than SVM and KNN and may constitute a promising method for further investigation.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Automatic snow type classification of snow micropenetrometer profiles with machine learning algorithms
    Kaltenborn, Julia
    Macfarlane, Amy R.
    Clay, Viviane
    Schneebeli, Martin
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2023, 16 (15) : 4521 - 4550
  • [32] Automatic Classification of Hypertension Types Based on Personal Features by Machine Learning Algorithms
    Nour, Majid
    Polat, Kemal
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [33] Retraction Note: Automatic text classification using machine learning and optimization algorithms
    R. Janani
    S. Vijayarani
    Soft Computing, 2024, 28 (Suppl 2) : 831 - 831
  • [34] Implementation of machine learning algorithms for gait recognition
    Kececi, Aybuke
    Yildirak, Armagan
    Ozyazici, Kaan
    Ayluctarhan, Gulsen
    Agbulut, Onur
    Zincir, Ibrahim
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2020, 23 (04): : 931 - 937
  • [36] Classification of three emotions by machine learning algorithms using psychophysiological signals
    Jang, E. H.
    Park, B. J.
    Kim, S. H.
    Chung, M. A.
    Sohn, J. H.
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2012, 85 (03) : 402 - 403
  • [37] Automatic Sleep Stage Classification Applying Machine Learning Algorithms on EEG Recordings
    Chriskos, Panteleimon
    Kaitalidou, Dimitra S.
    Karakasis, Georgios
    Frantzidis, Christos
    Gkivogkli, Polyxeni T.
    Bamidis, Panagiotis
    Kourtidou-Papadeli, Chrysoula
    2017 IEEE 30TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2017, : 435 - 439
  • [38] Comparison of machine learning algorithms and feature extraction techniques for the automatic detection of surface EMG activation timing
    Gallon, Valentina Mejia
    Velez, Stirley Madrid
    Ramirez, Juan
    Bolanos, Freddy
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 94
  • [39] An Evaluation on Different Machine Learning Algorithms for Classification and Prediction of Antifungal Peptides
    Mousavizadegan, Maryam
    Mohabatkar, Hassan
    MEDICINAL CHEMISTRY, 2016, 12 (08) : 795 - 800
  • [40] Performance Evaluation of Different Machine Learning Classification Algorithms for Disease Diagnosis
    Al-Hashem, Munder Abdulatef
    Alqudah, Ali Mohammad
    Qananwah, Qasem
    INTERNATIONAL JOURNAL OF E-HEALTH AND MEDICAL COMMUNICATIONS, 2021, 12 (06)