Automatic Sleep Stage Classification Applying Machine Learning Algorithms on EEG Recordings

被引:13
|
作者
Chriskos, Panteleimon [1 ]
Kaitalidou, Dimitra S. [1 ]
Karakasis, Georgios [1 ]
Frantzidis, Christos [1 ,2 ]
Gkivogkli, Polyxeni T. [1 ,2 ]
Bamidis, Panagiotis [1 ,2 ]
Kourtidou-Papadeli, Chrysoula [2 ]
机构
[1] Aristotle Univ Thessaloniki, Med Sch, Lab Med Phys, Thessaloniki, Greece
[2] Grp Aerosp Med Assoc GASMA, Thessaloniki, Greece
基金
欧盟地平线“2020”;
关键词
GRAPH-THEORETICAL ANALYSIS; BRAIN; NETWORKS; SYNCHRONIZATION; DYNAMICS;
D O I
10.1109/CBMS.2017.83
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper focuses on developing a novel approach to automatic sleep stage classification based on electroencephalographic (EEG) data. The proposed methodology employs contemporary mathematical tools such as the synchronization likelihood and graph theory metrics applied on sleep EEG data. The derived features are then fitted into three different machine learning techniques, namely k-nearest neighbors, support vector machines and neural networks. The evaluation of their comparative performance is investigated according to their accuracy. Interestingly, the support vector machine achieves the maximum possible accuracy, i.e., 89.07%, which renders it as a suitable method for sleep stage classification.
引用
收藏
页码:435 / 439
页数:5
相关论文
共 50 条
  • [1] Applying Machine Learning Algorithms for the Classification of Sleep Disorders
    Alshammari, Talal Sarheed
    [J]. IEEE ACCESS, 2024, 12 : 36110 - 36121
  • [2] Automatic sleep stage classification with reduced epoch of EEG
    Sagar Santaji
    Snehal Santaji
    Veena Desai
    [J]. Evolutionary Intelligence, 2022, 15 : 2239 - 2246
  • [3] Automatic sleep stage classification with reduced epoch of EEG
    Santaji, Sagar
    Santaji, Snehal
    Desai, Veena
    [J]. EVOLUTIONARY INTELLIGENCE, 2022, 15 (03) : 2239 - 2246
  • [4] Automatic sleep stage classification: From classical machine learning methods to deep learning
    Sekkal, Rym Nihel
    Bereksi-Reguig, Fethi
    Ruiz-Fernandez, Daniel
    Dib, Nabil
    Sekkal, Samira
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 77
  • [5] Applying Extreme Learning Machine to Classification of EEG BCI
    Tan, Ping
    Sa, Weiping
    Yu, Lingli
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (CYBER), 2016, : 228 - 232
  • [6] Validation of the influence of biosignals on performance of machine learning algorithms for sleep stage classification
    Choi, Junggu
    Kwon, Seohyun
    Park, Sohyun
    Han, Sanghoon
    [J]. DIGITAL HEALTH, 2023, 9
  • [7] A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia
    Ieracitano, Cosimo
    Mammone, Nadia
    Hussain, Amir
    Morabito, Francesco C.
    [J]. NEURAL NETWORKS, 2020, 123 : 176 - 190
  • [8] Metric Learning for Automatic Sleep Stage Classification
    Huy Phan
    Quan Do
    The-Luan Do
    Duc-Lung Vu
    [J]. 2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 5025 - 5028
  • [9] END-TO-END MACHINE LEARNING ON RAW EEG SIGNALS FOR SLEEP STAGE CLASSIFICATION
    Gunnlaugsson, E.
    Ragnarsdottir, H.
    Prainsson, H. M.
    Finnsson, E.
    Jonsson, S. A. E.
    Helgadottir, H.
    Agustsson, J. S.
    Herman, P.
    [J]. SLEEP MEDICINE, 2019, 64 : S139 - S139
  • [10] Automatic Sleep Stage Classification with Optimized Selection of EEG Channels
    Stenwig, Hakon
    Soler, Andres
    Furuki, Junya
    Suzuki, Yoko
    Abe, Takashi
    Molinas, Marta
    [J]. 2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1708 - 1715