Automatic sleep stage classification with reduced epoch of EEG

被引:0
|
作者
Santaji, Sagar [1 ]
Santaji, Snehal [1 ]
Desai, Veena [1 ]
机构
[1] KLS Gogte Inst Technol, Belagavi, Karnataka, India
关键词
EEG signal; Reduced epoch duration; Automatic sleep stage classification; Infinite impulse response filter; Random forest; Five-fold cross validation; ENSEMBLE; FEATURES; PHASE;
D O I
10.1007/s12065-021-00632-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the recent years analysis of Electroencephalogram (EEG) signal has played vital role in automatic sleep scoring technique. Classification of sleep stages help in understanding sleep related issues. Manual analysis of sleep scoring is costly, tedious and time-consuming process. It is essential to design an automatic sleep scoring technique which is convenient to patients and simplifies the diagnostic process using EEG signals. Implementation of such technique enable experts to identify sleep related issues. In this paper, EEG signals are recorded for 60 subjects and preprocessed using Infinite Impulse Response (IIR) filter. Sleep stages are classified into three major stages viz stage 1, 2 and 3 with 10 s epoch duration using statistical features of EEG and machine learning algorithms with five-fold cross validation. Proposed method is more feasible for physicians to diagnose sleep disorders and proves to be the better technique with improved accuracy compared to other existing studies.
引用
收藏
页码:2239 / 2246
页数:8
相关论文
共 50 条
  • [1] Automatic sleep stage classification with reduced epoch of EEG
    Sagar Santaji
    Snehal Santaji
    Veena Desai
    [J]. Evolutionary Intelligence, 2022, 15 : 2239 - 2246
  • [2] Automatic Sleep Stage Classification with Optimized Selection of EEG Channels
    Stenwig, Hakon
    Soler, Andres
    Furuki, Junya
    Suzuki, Yoko
    Abe, Takashi
    Molinas, Marta
    [J]. 2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1708 - 1715
  • [3] Automatic Sleep Stage Classification Using Ear-EEG
    Stochholm, Andreas
    Mikkelsen, Kaare
    Kidmose, Preben
    [J]. 2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 4751 - 4754
  • [4] Automatic Sleep Stage Classification using EEG and EMG signal
    Kim, Hyungjik
    Choi, Sunwoong
    [J]. 2018 TENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2018), 2018, : 207 - 212
  • [5] Wavelet Decomposition Based Automatic Sleep Stage Classification Using EEG
    Crasto, Nieves
    Upadhyay, Richa
    [J]. BIOINFORMATICS AND BIOMEDICAL ENGINEERING, IWBBIO 2017, PT I, 2017, 10208 : 508 - 516
  • [6] Automatic sleep stage classification based on subcutaneous EEG in patients with epilepsy
    Gangstad, Sirin W.
    Mikkelsen, Kaare B.
    Kidmose, Preben
    Tabar, Yousef R.
    Weisdorf, Sigge
    Lauritzen, Maja H.
    Hemmsen, Martin C.
    Hansen, Lars K.
    Kjaer, Troels W.
    Duun-Henriksen, Jonas
    [J]. BIOMEDICAL ENGINEERING ONLINE, 2019, 18 (01) : 106
  • [7] Automatic sleep stage classification based on subcutaneous EEG in patients with epilepsy
    Sirin W. Gangstad
    Kaare B. Mikkelsen
    Preben Kidmose
    Yousef R. Tabar
    Sigge Weisdorf
    Maja H. Lauritzen
    Martin C. Hemmsen
    Lars K. Hansen
    Troels W. Kjaer
    Jonas Duun-Henriksen
    [J]. BioMedical Engineering OnLine, 18
  • [8] Automatic Sleep Stage Classification
    Hassan, Ahnaf Rashik
    Bhuiyan, Mohammed Imamul Hassan
    [J]. 2015 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL INFORMATION AND COMMUNICATION TECHNOLOGY (EICT), 2015, : 211 - 216
  • [9] Automatic Detection of the Wake and Stage 1 Sleep Stages Using the EEG Sub-Epoch Approach
    Malaekah, Emad
    Cvetkovic, Dean
    [J]. 2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 6401 - 6404
  • [10] Automatic Sleep Stage Classification Applying Machine Learning Algorithms on EEG Recordings
    Chriskos, Panteleimon
    Kaitalidou, Dimitra S.
    Karakasis, Georgios
    Frantzidis, Christos
    Gkivogkli, Polyxeni T.
    Bamidis, Panagiotis
    Kourtidou-Papadeli, Chrysoula
    [J]. 2017 IEEE 30TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2017, : 435 - 439