Random perturbations of parametric autoresonance

被引:1
|
作者
Sultanov, Oskar [1 ,2 ]
机构
[1] Russian Acad Sci, Ufa Sci Ctr, Inst Math, 112 Chernyshevsky St, Ufa 450008, Russia
[2] Peoples Friendship Univ Russia RUDN Univ, 6 Miklukho Maklaya St, Moscow 117198, Russia
关键词
Nonlinear system; Autoresonance; Random perturbation; Stability analysis; STABILITY; MODELS; SYSTEMS; PLASMAS;
D O I
10.1007/s11071-017-3625-8
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We consider a system of two nonlinear differential equations describing the capture into autoresonance in nonlinear oscillators under small parametric driving. Solutions with an infinitely growing amplitude are associated with the autoresonance phenomenon. Stability of such solutions is of great importance because only stable solutions correspond to physically observable motions. We study stability of autoresonant solutions with power asymptotics and show that the random fluctuations of the driving cannot destroy the capture into the parametric autoresonance.
引用
收藏
页码:2785 / 2793
页数:9
相关论文
共 50 条
  • [41] Random perturbations of deterministic equilibria
    Gagnon, G
    JOURNAL OF ECONOMIC THEORY, 2003, 111 (01) : 135 - 146
  • [42] RANDOM PERTURBATIONS OF MATRIX COCYLES
    YOUNG, LS
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1986, 6 : 627 - 637
  • [43] RANDOM PERTURBATIONS OF TRANSFORMATIONS OF AN INTERVAL
    KATOK, A
    KIFER, Y
    JOURNAL D ANALYSE MATHEMATIQUE, 1986, 47 : 193 - 237
  • [44] RANDOM PERTURBATIONS OF SINGULAR SPECTRA
    HOWLAND, JS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (04) : 1009 - 1011
  • [45] RANDOM PERTURBATIONS OF UNBOUNDED POTENTIAL
    BOBRIKOV, AN
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1990, (03): : 78 - 80
  • [46] Random perturbations of nonlinear oscillators
    Freidlin, M
    Weber, M
    ANNALS OF PROBABILITY, 1998, 26 (03): : 925 - 967
  • [47] On Duffing equation with random perturbations
    Ambrazevicius, A.
    Ivanauskas, F.
    Pragarauskas, H.
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2010, 15 (02): : 129 - 138
  • [48] Random Perturbations of Matrix Polynomials
    Pagacz, Patryk
    Wojtylak, Michal
    JOURNAL OF THEORETICAL PROBABILITY, 2022, 35 (01) : 52 - 88
  • [49] ATTRACTORS VIA RANDOM PERTURBATIONS
    KIFER, Y
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (03) : 445 - 455
  • [50] PERTURBATIONS OF RANDOM MATRIX PRODUCTS
    KIFER, Y
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 61 (01): : 83 - 95