Random perturbations of parametric autoresonance

被引:1
|
作者
Sultanov, Oskar [1 ,2 ]
机构
[1] Russian Acad Sci, Ufa Sci Ctr, Inst Math, 112 Chernyshevsky St, Ufa 450008, Russia
[2] Peoples Friendship Univ Russia RUDN Univ, 6 Miklukho Maklaya St, Moscow 117198, Russia
关键词
Nonlinear system; Autoresonance; Random perturbation; Stability analysis; STABILITY; MODELS; SYSTEMS; PLASMAS;
D O I
10.1007/s11071-017-3625-8
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We consider a system of two nonlinear differential equations describing the capture into autoresonance in nonlinear oscillators under small parametric driving. Solutions with an infinitely growing amplitude are associated with the autoresonance phenomenon. Stability of such solutions is of great importance because only stable solutions correspond to physically observable motions. We study stability of autoresonant solutions with power asymptotics and show that the random fluctuations of the driving cannot destroy the capture into the parametric autoresonance.
引用
收藏
页码:2785 / 2793
页数:9
相关论文
共 50 条
  • [31] The destabilizing effect of parametric random perturbations of white noise type in certain quasilinear continuous dynamic systems
    Korenevskii, D. G.
    DOKLADY MATHEMATICS, 2006, 73 (03) : 328 - 330
  • [32] Mean width of random perturbations of random polytopes
    Alonso-Gutierrez, David
    Prochno, Joscha
    ADVANCES IN GEOMETRY, 2017, 17 (01) : 75 - 90
  • [33] Statistical resilience of random populations to random perturbations
    Eliazar, Iddo
    Klafter, Joseph
    PHYSICAL REVIEW E, 2009, 79 (01):
  • [34] SUPPRESSION OF CHAOS BY RESONANT PARAMETRIC PERTURBATIONS
    LIMA, R
    PETTINI, M
    PHYSICAL REVIEW A, 1990, 41 (02): : 726 - 733
  • [35] Chandler wobble under parametric perturbations
    Markov, Yu. G.
    Sinitsyn, I. N.
    DOKLADY PHYSICS, 2006, 51 (10) : 560 - 563
  • [36] EIGENVALUE PERTURBATIONS AND NONLINEAR PARAMETRIC OPTIMIZATION
    GOLLAN, B
    MATHEMATICAL PROGRAMMING STUDY, 1987, 30 : 67 - 81
  • [37] SUPPRESSION OF CHAOS BY NONRESONANT PARAMETRIC PERTURBATIONS
    KIVSHAR, YS
    RODELSPERGER, F
    BENNER, H
    PHYSICAL REVIEW E, 1994, 49 (01): : 319 - 324
  • [38] Chandler wobble under parametric perturbations
    Yu. G. Markov
    I. N. Sinitsyn
    Doklady Physics, 2006, 51 : 560 - 563
  • [39] Parametric Perturbations and Dynamic System Control
    A. Yu. Loskutov
    A. K. Prokhorov
    S. D. Rybalko
    Yu. S. Fomina
    Computational Mathematics and Modeling, 2004, 15 (3) : 257 - 275
  • [40] RECURRENCE IN SYSTEMS WITH RANDOM PERTURBATIONS
    Szala, Leszek
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (06):