2-Factors of cubic bipartite graphs

被引:2
|
作者
Haghparast, Nastaran [1 ]
Ozeki, Kenta [2 ]
机构
[1] Amirkabir Univ Technol, Dept Math & Comp Sci, Tehran, Iran
[2] Yokohama Natl Univ, Fac Environm & Informat Sci, Yokohama, Kanagawa, Japan
关键词
Cubic graphs; 2-factors without short cycles; EVEN SUBGRAPHS;
D O I
10.1016/j.disc.2021.112357
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a positive integer k >= 3, a {C-n : n >= k}-factor in a graph G is a spanning subgraph of G in which each component is a cycle of length at least k. Kano, Lee and Suzuki proved that every bipartite cubic graph contains a {C-n : n >= 6}-factor. In this paper, we prove that every bipartite cubic graph G contains a {C-n : n >= 8}-factor, provided that G satisfies some conditions related to 6-cycles. (C) 2021 Published by Elsevier B.V.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Avoiding 7-circuits in 2-factors of cubic graphs
    Lukotka, Robert
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (04):
  • [22] AVOIDING 5-CIRCUITS IN 2-FACTORS OF CUBIC GRAPHS
    Candrakova, Barbora
    Lukot'ka, Robert
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (03) : 1387 - 1405
  • [23] Properly colored 2-factors of edge-colored complete bipartite graphs
    Guo, Shanshan
    Huang, Fei
    Yuan, Jinjiang
    DISCRETE MATHEMATICS, 2022, 345 (12)
  • [24] 2-factors in Hamiltonian graphs
    Pfender, F
    ARS COMBINATORIA, 2004, 72 : 287 - 293
  • [25] 2-factors in dense graphs
    Alon, N
    Fischer, E
    DISCRETE MATHEMATICS, 1996, 152 (1-3) : 13 - 23
  • [26] A note on degree sum conditions for 2-factors with a prescribed number of cycles in bipartite graphs
    Chiba, Shuya
    Yamashita, Tomoki
    DISCRETE MATHEMATICS, 2017, 340 (12) : 2871 - 2877
  • [27] On 2-Factors with Prescribed Properties in a Bipartite Graph
    Jin YAN Gui Zhen LIU School of Mathematics and Systems Science
    ActaMathematicaSinica(EnglishSeries), 2006, 22 (04) : 1115 - 1120
  • [28] On 2-factors with prescribed properties in a bipartite graph
    Yan, Jin
    Liu, Gui Zhen
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (04) : 1115 - 1120
  • [29] Chordality and 2-factors in tough graphs
    Bauer, D
    Katona, GY
    Kratsch, D
    Veldman, HJ
    DISCRETE APPLIED MATHEMATICS, 2000, 99 (1-3) : 323 - 329
  • [30] EXISTENCE OF 2-FACTORS IN SQUARES OF GRAPHS
    ALAVI, Y
    CHARTRAND, G
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1975, 25 (01) : 79 - 83