2-factors in dense graphs

被引:28
|
作者
Alon, N [1 ]
Fischer, E [1 ]
机构
[1] TEL AVIV UNIV,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,DEPT MATH,IL-69978 TEL AVIV,ISRAEL
关键词
D O I
10.1016/0012-365X(95)00242-O
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A conjecture of Sauer and Spencer states that any graph G on n vertices with minimum degree at least 2/3n contains any graph H on n vertices with maximum degree 2 or less. This conjecture is proven here for all sufficiently large n.
引用
收藏
页码:13 / 23
页数:11
相关论文
共 50 条
  • [1] 2-factors in dense bipartite graphs
    Czygrinow, A
    Kierstead, HA
    [J]. DISCRETE MATHEMATICS, 2002, 257 (2-3) : 357 - 369
  • [2] 2-factors in Hamiltonian graphs
    Pfender, F
    [J]. ARS COMBINATORIA, 2004, 72 : 287 - 293
  • [3] Small 2-factors of bipartite graphs
    Horak, P
    Bertram, E
    Mohammed, S
    [J]. ARS COMBINATORIA, 2001, 58 : 129 - 146
  • [4] EXISTENCE OF 2-FACTORS IN SQUARES OF GRAPHS
    ALAVI, Y
    CHARTRAND, G
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 1975, 25 (01) : 79 - 83
  • [5] Chordality and 2-factors in tough graphs
    Bauer, D
    Katona, GY
    Kratsch, D
    Veldman, HJ
    [J]. DISCRETE APPLIED MATHEMATICS, 2000, 99 (1-3) : 323 - 329
  • [6] ON 2-FACTORS OF BIPARTITE REGULAR GRAPHS
    HORTON, JD
    [J]. DISCRETE MATHEMATICS, 1982, 41 (01) : 35 - 41
  • [7] On 2-Factors with Chorded Quadrilaterals in Graphs
    Gao, Yunshu
    Yan, Jin
    Li, Guojun
    [J]. ARS COMBINATORIA, 2011, 98 : 193 - 201
  • [8] 2-Factors of cubic bipartite graphs
    Haghparast, Nastaran
    Ozeki, Kenta
    [J]. DISCRETE MATHEMATICS, 2021, 344 (07)
  • [9] 2-factors in random regular graphs
    Robalewska, HD
    [J]. JOURNAL OF GRAPH THEORY, 1996, 23 (03) : 215 - 224
  • [10] Extensions to 2-factors in bipartite graphs
    Vandenbussche, Jennifer
    West, Douglas B.
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (03):