On 2-Factors with Chorded Quadrilaterals in Graphs

被引:0
|
作者
Gao, Yunshu [1 ]
Yan, Jin [2 ]
Li, Guojun [2 ]
机构
[1] Ningxia Univ, Sch Math & Comp Sci, Yinchuan 750021, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
关键词
Degree condition; Vertex-disjoint; Disjoint cycle; CYCLES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a positive integer and G a graph with order n >= 4k + 3. It is proved that if the minimum degree sum of any two nonadjacent vertices is at least n + k, then G contains a 2-factor with k + 1 disjoint cycles, C(1,) ..., C(k)+i such that C(i) are chorded quadrilateral for 1 <= i <= k - 1 and the length of C(k) is at most 4.
引用
收藏
页码:193 / 201
页数:9
相关论文
共 50 条
  • [1] 2-factors in Hamiltonian graphs
    Pfender, F
    [J]. ARS COMBINATORIA, 2004, 72 : 287 - 293
  • [2] 2-factors in dense graphs
    Alon, N
    Fischer, E
    [J]. DISCRETE MATHEMATICS, 1996, 152 (1-3) : 13 - 23
  • [3] On 2-factors with quadrilaterals containing specified vertices in a bipartite graph
    Yan, Jin
    Liu, Guizhen
    [J]. ARS COMBINATORIA, 2007, 82 : 133 - 144
  • [4] Small 2-factors of bipartite graphs
    Horak, P
    Bertram, E
    Mohammed, S
    [J]. ARS COMBINATORIA, 2001, 58 : 129 - 146
  • [5] 2-factors in dense bipartite graphs
    Czygrinow, A
    Kierstead, HA
    [J]. DISCRETE MATHEMATICS, 2002, 257 (2-3) : 357 - 369
  • [6] EXISTENCE OF 2-FACTORS IN SQUARES OF GRAPHS
    ALAVI, Y
    CHARTRAND, G
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 1975, 25 (01) : 79 - 83
  • [7] Chordality and 2-factors in tough graphs
    Bauer, D
    Katona, GY
    Kratsch, D
    Veldman, HJ
    [J]. DISCRETE APPLIED MATHEMATICS, 2000, 99 (1-3) : 323 - 329
  • [8] ON 2-FACTORS OF BIPARTITE REGULAR GRAPHS
    HORTON, JD
    [J]. DISCRETE MATHEMATICS, 1982, 41 (01) : 35 - 41
  • [9] 2-Factors of cubic bipartite graphs
    Haghparast, Nastaran
    Ozeki, Kenta
    [J]. DISCRETE MATHEMATICS, 2021, 344 (07)
  • [10] 2-factors in random regular graphs
    Robalewska, HD
    [J]. JOURNAL OF GRAPH THEORY, 1996, 23 (03) : 215 - 224