Bursting Oscillation and Its Mechanism of a Generalized Duffing-Van der Pol System with Periodic Excitation

被引:10
|
作者
Qian, Youhua [1 ]
Zhang, Danjin [1 ]
Lin, Bingwen [1 ]
机构
[1] Zhejiang Normal Univ, Coll Math & Comp Sci, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
MIXED-MODE OSCILLATIONS; BIFURCATION MECHANISM; HOPF-BIFURCATION;
D O I
10.1155/2021/5556021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The complex bursting oscillation and bifurcation mechanisms in coupling systems of different scales have been a hot spot domestically and overseas. In this paper, we analyze the bursting oscillation of a generalized Duffing-Van der Pol system with periodic excitation. Regarding this periodic excitation as a slow-varying parameter, the system can possess two time scales and the equilibrium curves and bifurcation analysis of the fast subsystem with slow-varying parameters are given. Through numerical simulations, we obtain four kinds of typical bursting oscillations, namely, symmetric fold/fold bursting, symmetric fold/supHopf bursting, symmetric subHopf/fold cycle bursting, and symmetric subHopf/subHopf bursting. It is found that these four kinds of bursting oscillations are symmetric. Combining the transformed phase portrait with bifurcation analysis, we can observe bursting oscillations obviously and further reveal bifurcation mechanisms of these four kinds of bursting oscillations.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Primary Resonance and Bifurcations in damped and driven Duffing-Van der Pol system
    Zhang, Shuguang
    Zhu, Zhiyong
    Guo, Zhi
    OPTICAL, ELECTRONIC MATERIALS AND APPLICATIONS, PTS 1-2, 2011, 216 : 782 - +
  • [32] Numerical solutions of stochastic Duffing-Van der Pol equations
    Hamed, Maha
    El-Kalla, I. L.
    El-Beltagy, Mohamed A.
    El-desouky, Beih S.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (01): : 256 - 273
  • [33] Investigations on the bifurcation of a noisy Duffing-Van der Pol oscillator
    Kumar, Pankaj
    Narayanan, S.
    Gupta, Sayan
    PROBABILISTIC ENGINEERING MECHANICS, 2016, 45 : 70 - 86
  • [34] DUFFING-VAN DER POL-TYPE OSCILLATOR SYSTEMS
    Feng, Zhaosheng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2014, 7 (06): : 1231 - 1257
  • [35] Numerical solutions of stochastic Duffing-Van der Pol equations
    Maha hamed
    I. L. El-Kalla
    Mohamed A. El-Beltagy
    Beih S. El-desouky
    Indian Journal of Pure and Applied Mathematics, 2024, 55 : 256 - 273
  • [36] Duffing-Van der pol系统的Hopf分岔
    符五久
    振动与冲击, 2010, 29 (07) : 204 - 209
  • [37] FIRST INTEGRALS FOR THE DUFFING-VAN DER POL TYPE OSCILLATOR
    Gao, Guangyue
    Feng, Zhaosheng
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, : 123 - 133
  • [38] Filtering for a Duffing-van der Pol stochastic differential equation
    Patel, Hiren G.
    Sharma, Shambhu N.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 226 : 386 - 397
  • [39] Bifurcation scenarios of the noisy Duffing-van der Pol oscillator
    SchenkHoppe, KR
    NONLINEAR DYNAMICS, 1996, 11 (03) : 255 - 274
  • [40] Chaotic dynamics of an extended Duffing-van der Pol system with a non-smooth perturbation and parametric excitation
    Hu, Sengen
    Zhou, Liangqiang
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2023, 78 (11): : 1015 - 1030