Bursting Oscillation and Its Mechanism of a Generalized Duffing-Van der Pol System with Periodic Excitation

被引:10
|
作者
Qian, Youhua [1 ]
Zhang, Danjin [1 ]
Lin, Bingwen [1 ]
机构
[1] Zhejiang Normal Univ, Coll Math & Comp Sci, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
MIXED-MODE OSCILLATIONS; BIFURCATION MECHANISM; HOPF-BIFURCATION;
D O I
10.1155/2021/5556021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The complex bursting oscillation and bifurcation mechanisms in coupling systems of different scales have been a hot spot domestically and overseas. In this paper, we analyze the bursting oscillation of a generalized Duffing-Van der Pol system with periodic excitation. Regarding this periodic excitation as a slow-varying parameter, the system can possess two time scales and the equilibrium curves and bifurcation analysis of the fast subsystem with slow-varying parameters are given. Through numerical simulations, we obtain four kinds of typical bursting oscillations, namely, symmetric fold/fold bursting, symmetric fold/supHopf bursting, symmetric subHopf/fold cycle bursting, and symmetric subHopf/subHopf bursting. It is found that these four kinds of bursting oscillations are symmetric. Combining the transformed phase portrait with bifurcation analysis, we can observe bursting oscillations obviously and further reveal bifurcation mechanisms of these four kinds of bursting oscillations.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Periodic bursting oscillations in a hybrid Rayleigh–Van der Pol–Duffing oscillator
    Feng Zhao
    Xindong Ma
    Shuqian Cao
    Nonlinear Dynamics, 2023, 111 : 2263 - 2279
  • [22] Complex dynamics in Duffing-Van der Pol equation
    Jing, ZJ
    Yang, ZY
    Jiang, T
    CHAOS SOLITONS & FRACTALS, 2006, 27 (03) : 722 - 747
  • [23] Complex Periodic Bursting Structures in the Rayleigh–van der Pol–Duffing Oscillator
    Xindong Ma
    Qinsheng Bi
    Lifeng Wang
    Journal of Nonlinear Science, 2022, 32
  • [24] A novel bursting oscillation and its transitions in a modified Bonhoeffer-van der Pol oscillator with weak periodic excitation
    Ma, Xindong
    Hou, Wentao
    Zhang, Xiaofang
    Han, Xiujing
    Bi, Qinsheng
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (10):
  • [25] A Duffing-van der Pol system's vibration behavior under multi-frequency excitation
    Zhao, Zhi-Hong
    Zhang, Ming
    Yang, Shao-Pu
    Xing, Hai-Jun
    Zhendong yu Chongji/Journal of Vibration and Shock, 2013, 32 (19): : 76 - 79
  • [26] Stochastic bifurcations of generalized Duffing-van der Pol system with fractional derivative under colored noise
    Li, Wei
    Zhang, Mei-Ting
    Zhao, Jun-Feng
    CHINESE PHYSICS B, 2017, 26 (09)
  • [27] Sufficient conditions for the existence of periodic solutions of the extended Duffing-Van der Pol oscillator
    Euzebio, Rodrigo D.
    Llibre, Jaume
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (08) : 1358 - 1382
  • [28] Global bifurcations for a generalized codimension-4 Duffing-Van der Pol equation
    Liu, Yan-Bin
    Chen, Yu-Shu
    Zhendong yu Chongji/Journal of Vibration and Shock, 2011, 30 (01): : 69 - 72
  • [29] A Kushner approach for small random perturbations of the Duffing-van der Pol system
    Sharma, Shambhu N.
    AUTOMATICA, 2009, 45 (04) : 1097 - 1099
  • [30] Complex dynamics in an extended Duffing-van der Pol oscillator
    Yu, Jun
    Pan, Weizhen
    Zhang, Rongbo
    Zhang, Weijun
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2006, 7 (03) : 365 - 367