Inorganic crosslinked supramolecular binder with fast Self-Healing for high performance silicon based anodes in Lithium-Ion batteries

被引:39
|
作者
Zhao, Junkai [1 ,2 ]
Wei, Daina [1 ,2 ]
Wang, Jianjun [1 ]
Yang, Kaimeng [1 ]
Wang, Zhaolong [3 ]
Chen, Zhengjian [4 ]
Zhang, Shiguo [5 ]
Zhang, Ce [2 ]
Yang, Xiaojing [1 ]
机构
[1] Beijing Normal Univ, Coll Chem, Beijing Key Lab Energy Convers & Storage Mat, Beijing 100875, Peoples R China
[2] China Acad Space Technol CAST, Qian Xuesen Lab Space Technol, Beijing 100094, Peoples R China
[3] Hunan Univ, Coll Mech & Vehicle Engn, Interdisciplinary Res Ctr Low carbon Technol & Equ, Changsha 410082, Peoples R China
[4] Zhuhai Inst Adv Technol, Chinese Acad Sci, Biomat R&D Ctr, Zhuhai 519003, Peoples R China
[5] Hunan Univ, Coll Mat Sci & Engn, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Peoples R China
关键词
Si-based anode; Self-healing; Supramolecular; Cycle stability; Lithium-ion battery; POLYMER; ACID; SI; NANOSHEETS; ALCOHOL;
D O I
10.1016/j.jcis.2022.06.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Capacity retention is one of the key factors affecting the performance of silicon (Si)-based lithium-ion batteries and other energy storage devices. Herein, a three dimension (3D) network self-healing binder (denoted as PVA + LB) consisting of polyvinyl alcohol (PVA) and lithium metaborate (LiBO2) solution is proposed to improve the cycle stability of Si-based lithium-ion batteries. The reversible capacity of the silicon electrode is maintained at 1767.3 mAh g(-1) after 180 cycles when employing PVA + LB as the bin-der, exhibiting excellent cycling stability. In addition, the silicon/carbon (Si/C) anode with the PVA + LB binder presents superior electrochemical performance, achieving a stable cycle life with a capacity reten-tion of 73.7% (858.3 mAh g(-1)) after 800 cycles at a current density of 1 A g(-1). The high viscosity and flex-ibility, 3D network structure, and self-healing characteristics of the PVA + LB binder are the main reasons to improve the stability of the Si or Si/C contained electrodes. The novel self-healing binder shows great potential in designing the new generation of silicon-based lithium-ion batteries and even electrochemical energy storage devices.(C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:373 / 382
页数:10
相关论文
共 50 条
  • [31] Highly Energy-Dissipative, Fast Self-Healing Binder for Stable Si Anode in Lithium-Ion Batteries
    Jiao, Xingxing
    Yin, Jianqing
    Xu, Xieyu
    Wang, Jialin
    Liu, Yangyang
    Xiong, Shizhao
    Zhang, Qilu
    Song, Jiangxuan
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (03)
  • [32] SELF-HEALING POLYMER BINDERS FOR THE Si AND Si/CARBON ANODES OF LITHIUM-ION BATTERIES
    Wu, Shuai
    Di, Fang
    Zheng, Jin-Gang
    Zhao, Hong-wei
    Zhang, Han
    Li, Li-xiang
    Geng, Xin
    Sun, Cheng-guo
    Yang, Hai-ming
    Zhou, Wei-min
    Ju, Dong-ying
    An, Bai-gang
    CARBON, 2023, 202 : 593 - 593
  • [33] Self-healing polymer binders for the Si and Si/carbon anodes of lithium-ion batteries
    Wu, Shuai
    Di, Fang
    Zheng, Jin-gang
    Zhao, Hong-wei
    Zhang, Han
    Li, Li-xiang
    Geng, Xin
    Sun, Cheng-guo
    Yang, Hai-ming
    Zhou, Wei-min
    Ju, Dong-ying
    An, Bai-gang
    NEW CARBON MATERIALS, 2022, 37 (05) : 802 - 826
  • [34] Supramolecular polymers as high performance binders for silicon anodes in lithium ion batteries
    Coskun, Ali
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [35] Nanostructured Silicon Anodes for High-Performance Lithium-Ion Batteries
    Rahman, Md. Arafat
    Song, Guangsheng
    Bhatt, Anand I.
    Wong, Yat Choy
    Wen, Cuie
    ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (05) : 647 - 678
  • [36] A highly crosslinked polymeric binder for silicon anode in lithium-ion batteries
    Hu, Xianchao
    Liang, Kang
    Li, Jianbin
    Ren, Yurong
    MATERIALS TODAY COMMUNICATIONS, 2021, 28
  • [37] Vinyltriethoxysilane crosslinked poly(acrylic acid sodium) as a polymeric binder for high performance silicon anodes in lithium ion batteries
    Zeng, Xiangyu
    Shi, Yongji
    Zhang, Yu
    Tang, Ruixian
    Wei, Liangming
    RSC ADVANCES, 2018, 8 (51) : 29230 - 29236
  • [38] Effect of Binder Content on Silicon Microparticle Anodes for Lithium-Ion Batteries
    Li, Anita
    Hempel, Jacob L. L.
    Balogh, Michael P. P.
    Cheng, Yang-Tse
    Taub, Alan I. I.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (01)
  • [39] Oxidized starch as a superior binder for silicon anodes in lithium-ion batteries
    Bie, Yitian
    Yang, Jun
    Nuli, Yanna
    Wang, Jiulin
    RSC ADVANCES, 2016, 6 (99): : 97084 - 97088
  • [40] Synthesis and characterization of supramolecular self-healing polymers designed for application in lithium-ion batteries
    Lopez, Jeffrey
    Pei, Allen
    Chen, Zheng
    Cui, Yi
    Bao, Zhenan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251