Inorganic crosslinked supramolecular binder with fast Self-Healing for high performance silicon based anodes in Lithium-Ion batteries

被引:39
|
作者
Zhao, Junkai [1 ,2 ]
Wei, Daina [1 ,2 ]
Wang, Jianjun [1 ]
Yang, Kaimeng [1 ]
Wang, Zhaolong [3 ]
Chen, Zhengjian [4 ]
Zhang, Shiguo [5 ]
Zhang, Ce [2 ]
Yang, Xiaojing [1 ]
机构
[1] Beijing Normal Univ, Coll Chem, Beijing Key Lab Energy Convers & Storage Mat, Beijing 100875, Peoples R China
[2] China Acad Space Technol CAST, Qian Xuesen Lab Space Technol, Beijing 100094, Peoples R China
[3] Hunan Univ, Coll Mech & Vehicle Engn, Interdisciplinary Res Ctr Low carbon Technol & Equ, Changsha 410082, Peoples R China
[4] Zhuhai Inst Adv Technol, Chinese Acad Sci, Biomat R&D Ctr, Zhuhai 519003, Peoples R China
[5] Hunan Univ, Coll Mat Sci & Engn, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Peoples R China
关键词
Si-based anode; Self-healing; Supramolecular; Cycle stability; Lithium-ion battery; POLYMER; ACID; SI; NANOSHEETS; ALCOHOL;
D O I
10.1016/j.jcis.2022.06.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Capacity retention is one of the key factors affecting the performance of silicon (Si)-based lithium-ion batteries and other energy storage devices. Herein, a three dimension (3D) network self-healing binder (denoted as PVA + LB) consisting of polyvinyl alcohol (PVA) and lithium metaborate (LiBO2) solution is proposed to improve the cycle stability of Si-based lithium-ion batteries. The reversible capacity of the silicon electrode is maintained at 1767.3 mAh g(-1) after 180 cycles when employing PVA + LB as the bin-der, exhibiting excellent cycling stability. In addition, the silicon/carbon (Si/C) anode with the PVA + LB binder presents superior electrochemical performance, achieving a stable cycle life with a capacity reten-tion of 73.7% (858.3 mAh g(-1)) after 800 cycles at a current density of 1 A g(-1). The high viscosity and flex-ibility, 3D network structure, and self-healing characteristics of the PVA + LB binder are the main reasons to improve the stability of the Si or Si/C contained electrodes. The novel self-healing binder shows great potential in designing the new generation of silicon-based lithium-ion batteries and even electrochemical energy storage devices.(C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:373 / 382
页数:10
相关论文
共 50 条
  • [21] Interpenetrated Gel Polymer Binder for High-Performance Silicon Anodes in Lithium-ion Batteries
    Song, Jiangxuan
    Zhou, Mingjiong
    Yi, Ran
    Xu, Terrence
    Gordin, Mikhail L.
    Tang, Duihai
    Yu, Zhaoxin
    Regula, Michael
    Wang, Donghai
    ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (37) : 5904 - 5910
  • [22] A mechanically robust self-healing binder for silicon anode in lithium ion batteries
    Chen, Hao
    Wu, Zhenzhen
    Su, Zhong
    Chen, Su
    Yan, Cheng
    Al-Mamun, Mohammad
    Tang, Yongbing
    Zhang, Shanqing
    NANO ENERGY, 2021, 81
  • [23] Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries
    Chao Wang
    Hui Wu
    Zheng Chen
    Matthew T. McDowell
    Yi Cui
    Zhenan Bao
    Nature Chemistry, 2013, 5 : 1042 - 1048
  • [24] Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries
    Wang, Chao
    Wu, Hui
    Chen, Zheng
    McDowell, Matthew T.
    Cui, Yi
    Bao, Zhenan
    NATURE CHEMISTRY, 2013, 5 (12) : 1042 - 1048
  • [25] Ambidextrous Polymeric Binder for Silicon Anodes in Lithium-Ion Batteries
    Kim, Junho
    Park, You Kyung
    Kim, Hansu
    Jung, In Hwan
    CHEMISTRY OF MATERIALS, 2022, 34 (13) : 5791 - 5798
  • [26] A Novel Gelatin Binder with Helical Crosslinked Network for High-Performance Si Anodes in Lithium-Ion Batteries
    Zeng, Xuejian
    Dai, Shiyuan
    Huang, Fei
    Chen, Chao
    Liu, Lichun
    Hong, Soon Hyung
    SMALL, 2024, 20 (45)
  • [27] An Energy Dissipative Binder for Self-Tuning Silicon Anodes in Lithium-Ion Batteries
    Tong, Yihong
    Jin, Siyu
    Xu, Hongyuan
    Li, Jiawei
    Kong, Zhao
    Jin, Hong
    Xu, Hui
    ADVANCED SCIENCE, 2023, 10 (02)
  • [28] A Triple Crosslinked Binder with Hierarchical Stress Dissipation and High Ionic Conductivity for Advanced Silicon Anodes in Lithium-ion Batteries
    He, Yang
    Zhou, Feng
    Zhang, Yingxi
    Lv, Tuan
    Chu, Paul K.
    Huo, Kaifu
    SMALL, 2024, 20 (45)
  • [29] Glycinamide modified polyacrylic acid as high-performance binder for silicon anodes in lithium-ion batteries
    Li, Juanjuan
    Zhang, Guangzhao
    Yang, Yu
    Yao, Dahua
    Lei, Zhiwen
    Li, Shuai
    Deng, Yonghong
    Wang, Chaoyang
    JOURNAL OF POWER SOURCES, 2018, 406 : 102 - 109
  • [30] Self-healing composite polymer electrolyte formed via supramolecular networks for high-performance lithium-ion batteries
    Zhou, Binghua
    Jo, Ye Hyang
    Wang, Rui
    He, Dan
    Zhou, Xingping
    Xie, Xiaolin
    Xue, Zhigang
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (17) : 10354 - 10362