Integral kernels on complex symmetric spaces and for the Dyson Brownian Motion

被引:1
|
作者
Graczyk, P. [1 ]
Sawyer, P. [2 ]
机构
[1] Univ Angers, UFR Sci, LAREMA, 2 Bd Lavoisier, F-49045 Angers 01, France
[2] Laurentian Univ, Dept Math & Comp Sci, Sudbury, ON P3E 2C6, Canada
关键词
complex symmetric spaces; Dyson Brownian Motion; heat kernel; Newton kernel; Poisson kernel; spherical functions; GREEN-FUNCTION; EIGENVALUES; BEHAVIOR;
D O I
10.1002/mana.201900252
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we consider flat and curved Riemannian symmetric spaces in the complex case and we study their basic integral kernels, in potential and spherical analysis: heat, Newton, Poisson kernels and spherical functions, i.e. the kernel of the spherical Fourier transform. We introduce and exploit a simple new method of construction of these W-invariant kernels by alternating sum formulas. We then use the alternating sum representation of these kernels to obtain their asymptotic behavior. We apply our results to the Dyson Brownian Motion on Rd${\bf R}<^>d$.
引用
收藏
页码:1378 / 1405
页数:28
相关论文
共 50 条
  • [31] PATH INTEGRAL AND BROWNIAN-MOTION
    WATABE, M
    SHIBATA, F
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1990, 59 (06) : 1905 - 1908
  • [32] THE INTEGRAL OF THE SUPREMUM PROCESS OF BROWNIAN MOTION
    Janson, Svante
    Petersson, Niclas
    JOURNAL OF APPLIED PROBABILITY, 2009, 46 (02) : 593 - 600
  • [33] Estimates of Green kernels and heat on symmetric spaces
    Carron, Gilles
    ANALYSIS & PDE, 2010, 3 (02): : 197 - 205
  • [34] The phase transition in the ultrametric ensemble and local stability of Dyson Brownian motion
    von Soosten, Per
    Warzel, Simone
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [35] Brownian motion on fractals and function spaces
    Jonsson, A
    MATHEMATISCHE ZEITSCHRIFT, 1996, 222 (03) : 495 - 504
  • [36] MAXIMUM OF DYSON BROWNIAN MOTION AND NON-COLLIDING SYSTEMS WITH A BOUNDARY
    Borodin, Alexei
    Ferrari, Patrik L.
    Praehofer, Michael
    Sasamoto, Tomohiro
    Warren, Jon
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2009, 14 : 486 - 494
  • [37] Phase Transitions for Products of Characteristic Polynomials under Dyson Brownian Motion
    Peter J. Forrester
    Dang-Zheng Liu
    Acta Mathematica Sinica, English Series, 2021, 37 : 509 - 524
  • [38] A Dyson Brownian Motion Model for Weak Measurements in Chaotic Quantum Systems
    Gerbino, Federico
    Le Doussal, Pierre
    Giachetti, Guido
    De Luca, Andrea
    QUANTUM REPORTS, 2024, 6 (02): : 200 - 230
  • [39] ON INTEGRAL OPERATORS WITH HOMOGENEOUS KERNELS IN MORREY SPACES
    Avsyankin, O. G.
    EURASIAN MATHEMATICAL JOURNAL, 2021, 12 (01): : 92 - 96
  • [40] Phase Transitions for Products of Characteristic Polynomials under Dyson Brownian Motion
    Forrester, Peter J.
    Liu, Dang-Zheng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (03) : 509 - 524