Integral kernels on complex symmetric spaces and for the Dyson Brownian Motion

被引:1
|
作者
Graczyk, P. [1 ]
Sawyer, P. [2 ]
机构
[1] Univ Angers, UFR Sci, LAREMA, 2 Bd Lavoisier, F-49045 Angers 01, France
[2] Laurentian Univ, Dept Math & Comp Sci, Sudbury, ON P3E 2C6, Canada
关键词
complex symmetric spaces; Dyson Brownian Motion; heat kernel; Newton kernel; Poisson kernel; spherical functions; GREEN-FUNCTION; EIGENVALUES; BEHAVIOR;
D O I
10.1002/mana.201900252
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we consider flat and curved Riemannian symmetric spaces in the complex case and we study their basic integral kernels, in potential and spherical analysis: heat, Newton, Poisson kernels and spherical functions, i.e. the kernel of the spherical Fourier transform. We introduce and exploit a simple new method of construction of these W-invariant kernels by alternating sum formulas. We then use the alternating sum representation of these kernels to obtain their asymptotic behavior. We apply our results to the Dyson Brownian Motion on Rd${\bf R}<^>d$.
引用
收藏
页码:1378 / 1405
页数:28
相关论文
共 50 条
  • [21] SYMMETRIC KERNELS OF BANACH IDEAL SPACES
    BIKTASHEVA, VA
    SIBERIAN MATHEMATICAL JOURNAL, 1984, 25 (04) : 531 - 533
  • [22] INEQUALITIES FOR POISSON KERNELS ON SYMMETRIC SPACES
    KORANYI, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 43 (02) : 465 - 469
  • [23] Brownian bridge on Riemannian symmetric spaces
    Bougerol, P
    Jeulin, T
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (08): : 785 - 790
  • [24] Reflection Negative Kernels and Fractional Brownian Motion
    Jorgensen, Palle E. T.
    Neeb, Karl-Hermann
    Olafsson, Gestur
    SYMMETRY-BASEL, 2018, 10 (06):
  • [25] On Mesoscopic Equilibrium for Linear Statistics in Dyson's Brownian Motion
    Duits, Maurice
    Johansson, Kurt
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 255 (1222) : 1 - +
  • [26] Non-crossing Brownian Paths and Dyson Brownian Motion Under a Moving Boundary
    Tristan Gautié
    Pierre Le Doussal
    Satya N. Majumdar
    Grégory Schehr
    Journal of Statistical Physics, 2019, 177 : 752 - 805
  • [27] Non-crossing Brownian Paths and Dyson Brownian Motion Under a Moving Boundary
    Gautie, Tristan
    Le Doussal, Pierre
    Majumdar, Satya N.
    Schehr, Gregory
    JOURNAL OF STATISTICAL PHYSICS, 2019, 177 (05) : 752 - 805
  • [28] Random functions via Dyson Brownian Motion: progress and problems
    Wang, Gaoyuan
    Battefeld, Thorsten
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (09):
  • [29] Edge rigidity of Dyson Brownian motion with general initial data
    Aggarwal, Amol
    Huang, Jiaoyang
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [30] The Stochastic Integral in General Hilbert Spaces (w.r.t. Brownian Motion)
    Prevot, Claudia
    Roeckner, Michael
    CONCISE COURSE ON STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS, 2007, 1905 : 5 - 42