Integral kernels on complex symmetric spaces and for the Dyson Brownian Motion

被引:1
|
作者
Graczyk, P. [1 ]
Sawyer, P. [2 ]
机构
[1] Univ Angers, UFR Sci, LAREMA, 2 Bd Lavoisier, F-49045 Angers 01, France
[2] Laurentian Univ, Dept Math & Comp Sci, Sudbury, ON P3E 2C6, Canada
关键词
complex symmetric spaces; Dyson Brownian Motion; heat kernel; Newton kernel; Poisson kernel; spherical functions; GREEN-FUNCTION; EIGENVALUES; BEHAVIOR;
D O I
10.1002/mana.201900252
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we consider flat and curved Riemannian symmetric spaces in the complex case and we study their basic integral kernels, in potential and spherical analysis: heat, Newton, Poisson kernels and spherical functions, i.e. the kernel of the spherical Fourier transform. We introduce and exploit a simple new method of construction of these W-invariant kernels by alternating sum formulas. We then use the alternating sum representation of these kernels to obtain their asymptotic behavior. We apply our results to the Dyson Brownian Motion on Rd${\bf R}<^>d$.
引用
收藏
页码:1378 / 1405
页数:28
相关论文
共 50 条