CRISPR/CAS9 Target Prediction with Deep Learning

被引:0
|
作者
Aktas, Ozlem [1 ]
Dogan, Elif [1 ]
Ensari, Tolga [2 ]
机构
[1] Dokuz Eylul Univ, Bilgisayar Muhendisligi Bolumu, Izmir, Turkey
[2] Istanbul Univ Cerrahpasa, Bilgisayar Muhendisligi Bolumu, Istanbul, Turkey
关键词
deep learning; convolutional neural networks; multi layer perceptron; CRISPR/CAS9; DATABASE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The CRISPR/CAS9 system is a powerful tool for regulating damaged genome sequences. Nucleases that are damaged in their sequence are called miRNAs (micro RNAs). The miRNAs targeted by multiple promoter sgRNA (single guide RNA) are cut or regulated from RNA by the CRISPR/CAS9 method. The sgRNAs targeted to the wrong miRNAs may cause unwanted genome distortions. In order to minimize these genome distortions, sgRNA target estimation was performed for CRISPR/CAS9 with deep learning in this study. In this article, convolutional neural networks (Convolutional Neural Networks-CNN) and multilayer perceptron (Multi Layer Perceptron-MLP) algorithms are used. A performance comparison of the CRISPR/CAS9 system for both algorithms was performed.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] ] CRISPRpred: A flexible and efficient tool for sgRNAs on-target activity prediction in CRISPR/Cas9 systems
    Rahman, Md. Khaledur
    Rahman, M. Sohel
    PLOS ONE, 2017, 12 (08):
  • [42] CRISPR/CAS9 GENE EDITING
    不详
    CHEMICAL & ENGINEERING NEWS, 2015, : 26 - 27
  • [44] Cas9 Targeting and the CRISPR Revolution
    Barrangou, Rodolphe
    SCIENCE, 2014, 344 (6185) : 707 - 708
  • [45] CRISPR/Cas9 as a Mutagenic Factor
    Shumega, Andrey R.
    Pavlov, Youri I.
    Chirinskaite, Angelina V.
    Rubel, Aleksandr A.
    Inge-Vechtomov, Sergey G.
    Stepchenkova, Elena I.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (02)
  • [46] Photoactivatable CRISPR/Cas9 System
    E. A. Akhmetova
    V. M. Golyshev
    I. P. Vokhtantcev
    M. I. Meschaninova
    A. G. Venyaminova
    D. S. Novopashina
    Russian Journal of Bioorganic Chemistry, 2021, 47 : 496 - 504
  • [47] CRISPR screens beyond Cas9
    Darren J. Burgess
    Nature Reviews Genetics, 2020, 21 : 273 - 273
  • [48] Controlling CRISPR–Cas9 activity
    Sarah Crunkhorn
    Nature Reviews Drug Discovery, 2019, 18 (7) : 500 - 500
  • [49] Liposomal delivery of CRISPR/Cas9
    Zhen, Shuai
    Li, Xu
    CANCER GENE THERAPY, 2020, 27 (7-8) : 515 - 527
  • [50] CRISPR/Cas9 ruling expected
    Cross, Ryan
    CHEMICAL & ENGINEERING NEWS, 2018, 96 (35) : 12 - 12