CRISPR/CAS9 Target Prediction with Deep Learning

被引:0
|
作者
Aktas, Ozlem [1 ]
Dogan, Elif [1 ]
Ensari, Tolga [2 ]
机构
[1] Dokuz Eylul Univ, Bilgisayar Muhendisligi Bolumu, Izmir, Turkey
[2] Istanbul Univ Cerrahpasa, Bilgisayar Muhendisligi Bolumu, Istanbul, Turkey
关键词
deep learning; convolutional neural networks; multi layer perceptron; CRISPR/CAS9; DATABASE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The CRISPR/CAS9 system is a powerful tool for regulating damaged genome sequences. Nucleases that are damaged in their sequence are called miRNAs (micro RNAs). The miRNAs targeted by multiple promoter sgRNA (single guide RNA) are cut or regulated from RNA by the CRISPR/CAS9 method. The sgRNAs targeted to the wrong miRNAs may cause unwanted genome distortions. In order to minimize these genome distortions, sgRNA target estimation was performed for CRISPR/CAS9 with deep learning in this study. In this article, convolutional neural networks (Convolutional Neural Networks-CNN) and multilayer perceptron (Multi Layer Perceptron-MLP) algorithms are used. A performance comparison of the CRISPR/CAS9 system for both algorithms was performed.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Off-target effects in CRISPR/Cas9 gene editing
    Guo, Congting
    Ma, Xiaoteng
    Gao, Fei
    Guo, Yuxuan
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [32] High-throughput target identification using CRISPR/Cas9
    Revankar, Chetana M.
    Braun, Julia
    Wong, LaiYee
    Wetter, Justin
    Yang, Jian-Ping
    Ravinder, Namritha
    Chesnut, Jon
    Piper, David
    CANCER RESEARCH, 2016, 76
  • [33] Improved HTGTS for CRISPR/Cas9 Off-target Detection
    Yin, Jianhang
    Liu, Mengzhu
    Liu, Yang
    Hu, Jiazhi
    BIO-PROTOCOL, 2019, 9 (09):
  • [34] Deletion of a target gene in Indica rice via CRISPR/Cas9
    Ying Wang
    Lizhao Geng
    Menglong Yuan
    Juan Wei
    Chen Jin
    Min Li
    Kun Yu
    Ya Zhang
    Huaibing Jin
    Eric Wang
    Zhijian Chai
    Xiangdong Fu
    Xianggan Li
    Plant Cell Reports, 2017, 36 : 1333 - 1343
  • [35] Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing
    Mitchell L. Leibowitz
    Stamatis Papathanasiou
    Phillip A. Doerfler
    Logan J. Blaine
    Lili Sun
    Yu Yao
    Cheng-Zhong Zhang
    Mitchell J. Weiss
    David Pellman
    Nature Genetics, 2021, 53 : 895 - 905
  • [36] A Machine Learning Approach to Identify the Importance of Novel Features for CRISPR/Cas9 Activity Prediction
    Vora, Dhvani Sandip
    Verma, Yugesh
    Sundar, Durai
    BIOMOLECULES, 2022, 12 (08)
  • [37] Coupling Cas9 to artificial inhibitory domains enhances CRISPR-Cas9 target specificity
    Aschenbrenner, Sabine
    Kallenberger, Stefan M.
    Hoffmann, Mareike D.
    Huck, Adrian
    Eils, Roland
    Niopek, Dominik
    SCIENCE ADVANCES, 2020, 6 (06)
  • [38] Deletion of a target gene in Indica rice via CRISPR/Cas9
    Wang, Ying
    Geng, Lizhao
    Yuan, Menglong
    Wei, Juan
    Jin, Chen
    Li, Min
    Yu, Kun
    Zhang, Ya
    Jin, Huaibing
    Wang, Eric
    Chai, Zhijian
    Fu, Xiangdong
    Li, Xianggan
    PLANT CELL REPORTS, 2017, 36 (08) : 1333 - 1343
  • [39] Interpretable CRISPR/Cas9 off-target activities with mismatches and indels prediction using BERT
    Luo, Ye
    Chen, Yaowen
    Xie, HuanZeng
    Zhu, Wentao
    Zhang, Guishan
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 169
  • [40] Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing
    Zhang, Song
    Shen, Jiangtao
    Li, Dali
    Cheng, Yiyun
    THERANOSTICS, 2021, 11 (02): : 614 - 648