CRISPR/CAS9 Target Prediction with Deep Learning

被引:0
|
作者
Aktas, Ozlem [1 ]
Dogan, Elif [1 ]
Ensari, Tolga [2 ]
机构
[1] Dokuz Eylul Univ, Bilgisayar Muhendisligi Bolumu, Izmir, Turkey
[2] Istanbul Univ Cerrahpasa, Bilgisayar Muhendisligi Bolumu, Istanbul, Turkey
关键词
deep learning; convolutional neural networks; multi layer perceptron; CRISPR/CAS9; DATABASE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The CRISPR/CAS9 system is a powerful tool for regulating damaged genome sequences. Nucleases that are damaged in their sequence are called miRNAs (micro RNAs). The miRNAs targeted by multiple promoter sgRNA (single guide RNA) are cut or regulated from RNA by the CRISPR/CAS9 method. The sgRNAs targeted to the wrong miRNAs may cause unwanted genome distortions. In order to minimize these genome distortions, sgRNA target estimation was performed for CRISPR/CAS9 with deep learning in this study. In this article, convolutional neural networks (Convolutional Neural Networks-CNN) and multilayer perceptron (Multi Layer Perceptron-MLP) algorithms are used. A performance comparison of the CRISPR/CAS9 system for both algorithms was performed.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] CrnnCrispr: An Interpretable Deep Learning Method for CRISPR/Cas9 sgRNA On-Target Activity Prediction
    Zhu, Wentao
    Xie, Huanzeng
    Chen, Yaowen
    Zhang, Guishan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (08)
  • [2] DL-CRISPR: A Deep Learning Method for Off-Target Activity Prediction in CRISPR/Cas9 With Data Augmentation
    Zhang, Yu
    Long, Yahui
    Yin, Rui
    Kwoh, Chee Keong
    IEEE ACCESS, 2020, 8 (08): : 76610 - 76617
  • [3] Prediction of Off-Target Effects in CRISPR/Cas9 System by Ensemble Learning
    Fan, Yongxian
    Xu, Haibo
    CURRENT BIOINFORMATICS, 2021, 16 (09) : 1169 - 1178
  • [4] Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: a review
    Sherkatghanad, Zeinab
    Abdar, Moloud
    Charlier, Jeremy
    Makarenkov, Vladimir
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (03)
  • [5] A systematic mapping study on machine learning techniques for the prediction of CRISPR/Cas9 sgRNA target cleavage
    Dimauro, Giovanni
    Barletta, Vita S.
    Catacchio, Claudia R.
    Colizzi, Lucio
    Maglietta, Rosalia
    Ventura, Mario
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 5813 - 5823
  • [6] CCTop: An Intuitive, Flexible and Reliable CRISPR/Cas9 Target Prediction Tool
    Stemmer, Manuel
    Thumberger, Thomas
    Keyer, Maria del Sol
    Wittbrodt, Joachim
    Mateo, Juan L.
    PLOS ONE, 2015, 10 (04):
  • [7] CRISPR/Cas9
    杨丽
    中南医学科学杂志, 2016, 44 (05) : 585 - 585
  • [8] CRISPR/Cas9
    Mizuno, Naoaki
    Mizutani, Eiji
    Sato, Hideyuki
    Kasai, Mariko
    Nakauchi, Hiromitsu
    Yamaguchi, Tomoyuki
    BIO-PROTOCOL, 2019, 9 (13):
  • [9] CRISPR–Cas9 hits its target in amyloidosis
    Thiago Carvalho
    Nature Medicine, 2022, 28 : 2438 - 2438
  • [10] Improving CRISPR/ Cas9 On-target Specificity
    Jamal, Muhammad
    Ullah, Arif
    Naeem, Muhammad Ahsan
    Tyagi, Rohit
    Habib, Zeshan
    Rehman, Khaista
    CURRENT ISSUES IN MOLECULAR BIOLOGY, 2018, 26 : 65 - 80