General fractional variational problem depending on indefinite integrals

被引:11
|
作者
Sayevand, K. [1 ]
Rostami, M. R. [1 ]
机构
[1] Univ Malayer, Fac Math Sci, POB 16846-13114, Malayer, Iran
关键词
Fractional calculus; Fractional variational problem; Rayleigh-Ritz method; Euler-Lagrange equation; Isoperimetric problems; EULER-LAGRANGE EQUATIONS; ISOPERIMETRIC PROBLEMS; TIME SCALES; CALCULUS; TERMS; FORMULATION;
D O I
10.1007/s11075-015-0076-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this report, we consider two kind of general fractional variational problem depending on indefinite integrals include unconstrained problem and isoperimetric problem. These problems can have multiple dependent variables, multiorder fractional derivatives, multiorder integral derivatives and boundary conditions. For both problems, we obtain the Euler-Lagrange type necessary conditions which must be satisfied for the given functional to be extremum. Also, we apply the Rayleigh-Ritz method for solving the unconstrained general fractional variational problem depending on indefinite integrals. By this method, the given problem is reduced to the problem for solving a system of algebraic equations using shifted Legendre polynomials basis functions. An approximate solution for this problem is obtained by solving the system. We discuss the analytic convergence of this method and finally by some examples will be showing the accurately and applicability for this technique.
引用
收藏
页码:959 / 987
页数:29
相关论文
共 50 条
  • [1] General fractional variational problem depending on indefinite integrals
    K. Sayevand
    M. R. Rostami
    Numerical Algorithms, 2016, 72 : 959 - 987
  • [2] Fractional variational problems depending on indefinite integrals
    Almeida, Ricardo
    Pooseh, Shakoor
    Torres, Delfim F. M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (03) : 1009 - 1025
  • [3] Fractional Variational Problems Depending on Indefinite Integrals and with Delay
    Ricardo Almeida
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 1515 - 1528
  • [4] Fractional Variational Problems Depending on Indefinite Integrals and with Delay
    Almeida, Ricardo
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (04) : 1515 - 1528
  • [5] Numerical Methods for Fractional Variational Problems Depending on Indefinite Integrals
    Wang, Dongling
    Xiao, Aiguo
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2013, 8 (02):
  • [6] A generalized fractional variational problem depending on indefinite integrals: Euler-Lagrange equation and numerical solution
    Almeida, Ricardo
    Khosravian-Arab, Hassan
    Shamsi, Mostafa
    JOURNAL OF VIBRATION AND CONTROL, 2013, 19 (14) : 2177 - 2186
  • [7] A generalized fractional variational problem depending on indefinite integrals: Euler-Lagrange equation and numerical solution
    Almeida, Ricardo
    Khosravian-Arab, Hassan
    Shamsi, Mostafa
    JVC/Journal of Vibration and Control, 2013, 19 (14): : 2177 - 2186
  • [8] FRACTIONAL VARIATIONAL PROBLEM INVOLVING INDEFINITE INTEGRALS AND NONSINGULAR KERNELS
    Jafari, Hossein
    Tajadodi, Haleh
    Khatir, Seyed Rabi Mousavian
    Nguyen, Van Thinh
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (04)
  • [9] A new operational approach for solving fractional variational problems depending on indefinite integrals
    Ezz-Eldien, S. S.
    Doha, E. H.
    Bhrawy, A. H.
    El-Kalaawy, A. A.
    Machado, J. A. T.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 57 : 246 - 263
  • [10] Numerical solution of fractional variational problems depending on indefinite integrals using transcendental Bernstein series
    Hassani, Hossein
    Avazzadeh, Zakieh
    Tenreiro Machado, Jose Antonio
    Naraghirad, Eskandar
    JOURNAL OF VIBRATION AND CONTROL, 2019, 25 (13) : 1930 - 1944