General fractional variational problem depending on indefinite integrals

被引:11
|
作者
Sayevand, K. [1 ]
Rostami, M. R. [1 ]
机构
[1] Univ Malayer, Fac Math Sci, POB 16846-13114, Malayer, Iran
关键词
Fractional calculus; Fractional variational problem; Rayleigh-Ritz method; Euler-Lagrange equation; Isoperimetric problems; EULER-LAGRANGE EQUATIONS; ISOPERIMETRIC PROBLEMS; TIME SCALES; CALCULUS; TERMS; FORMULATION;
D O I
10.1007/s11075-015-0076-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this report, we consider two kind of general fractional variational problem depending on indefinite integrals include unconstrained problem and isoperimetric problem. These problems can have multiple dependent variables, multiorder fractional derivatives, multiorder integral derivatives and boundary conditions. For both problems, we obtain the Euler-Lagrange type necessary conditions which must be satisfied for the given functional to be extremum. Also, we apply the Rayleigh-Ritz method for solving the unconstrained general fractional variational problem depending on indefinite integrals. By this method, the given problem is reduced to the problem for solving a system of algebraic equations using shifted Legendre polynomials basis functions. An approximate solution for this problem is obtained by solving the system. We discuss the analytic convergence of this method and finally by some examples will be showing the accurately and applicability for this technique.
引用
收藏
页码:959 / 987
页数:29
相关论文
共 50 条
  • [41] Properties for ψ-Fractional Integrals Involving a General Function ψ and Applications
    Liang, Jin
    Mu, Yunyi
    MATHEMATICS, 2019, 7 (06)
  • [42] Mellin transform for fractional integrals with general analytic kernel
    Rashid, Maliha
    Kalsoom, Amna
    Sager, Maria
    Inc, Mustafa
    Baleanu, Dumitru
    Alshomrani, Ali S.
    AIMS MATHEMATICS, 2022, 7 (05): : 9443 - 9462
  • [43] Variational Approximation for Fractional Sturm–Liouville Problem
    Prashant K. Pandey
    Rajesh K. Pandey
    Om P. Agrawal
    Fractional Calculus and Applied Analysis, 2020, 23 : 861 - 874
  • [44] GENERAL VARIATIONAL APPROACH TO THE INTERPOLATION PROBLEM
    MITAS, L
    MITASOVA, H
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1988, 16 (12) : 983 - 992
  • [45] The general variational problem of filtration kinetics
    Sokolov, NV
    DOKLADY AKADEMII NAUK, 1996, 349 (02) : 189 - 192
  • [46] Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields
    Franchi, B
    Serapioni, R
    Cassano, FS
    HOUSTON JOURNAL OF MATHEMATICS, 1996, 22 (04): : 859 - 890
  • [47] Jacobi and Legendre variational tests for a class of generalized fractional variational problem
    Singha, Neelam
    Nahak, Chandal
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2019, 68 (03) : 553 - 568
  • [48] 91.46 Integrals - indefinite or misdefined?
    Quadling, Douglas
    MATHEMATICAL GAZETTE, 2007, 91 (521): : 303 - +
  • [49] Jacobi and Legendre variational tests for a class of generalized fractional variational problem
    Neelam Singha
    Chandal Nahak
    Rendiconti del Circolo Matematico di Palermo Series 2, 2019, 68 : 553 - 568
  • [50] The indefinite symbolic plithogenic integrals
    Alhasan Y.A.
    Smarandache F.
    Abdulfatah R.A.
    Neutrosophic Sets and Systems, 2023, 60 : 29 - 38