Numerical solution of fractional variational problems depending on indefinite integrals using transcendental Bernstein series

被引:3
|
作者
Hassani, Hossein [1 ]
Avazzadeh, Zakieh [2 ]
Tenreiro Machado, Jose Antonio [3 ]
Naraghirad, Eskandar [4 ]
机构
[1] Shahrekord Univ, Fac Math Sci, Dept Appl Math, Shahrekord, Iran
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing, Jiangsu, Peoples R China
[3] Polytech Porto, Inst Engn, Dept Elect Engn, R Dr Antonio Bernardino de Almeida, Porto, Portugal
[4] Univ Yasuj, Dept Math, Yasuj, Iran
关键词
Fractional variational problems; Bernstein polynomials; transcendental Bernstein series; optimization method; control parameters; OPERATIONAL MATRIX; COLLOCATION METHOD; EQUATIONS; POLYNOMIALS; FORMULATION; FRAMEWORK;
D O I
10.1177/1077546319840901
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper proposes an optimization method for solving fractional variational problems depending on indefinite integrals, where the fractional derivative is described in the Caputo sense. The method is based on the new basis functions consisting of the transcendental Bernstein series (TBS) and their operational matrices. In the first step, we derive an approximate solution for the problem using TBS with the free coefficients and control parameters. In the second step, we use the fractional operational matrix, with the help of the Lagrange multipliers technique, for converting the fractional variational problem into an easier one, described by a system of nonlinear algebraic equations. The convergence analysis of the method, will be guaranteed by proving a new theorem concerning TBS. Finally, for illustrating the efficiency and accuracy of the proposed technique, several numerical examples are analyzed and the results compared with the analytical solutions or the approximation obtained by other techniques.
引用
收藏
页码:1930 / 1944
页数:15
相关论文
共 50 条
  • [1] Numerical Methods for Fractional Variational Problems Depending on Indefinite Integrals
    Wang, Dongling
    Xiao, Aiguo
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2013, 8 (02):
  • [2] Fractional variational problems depending on indefinite integrals
    Almeida, Ricardo
    Pooseh, Shakoor
    Torres, Delfim F. M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (03) : 1009 - 1025
  • [3] Fractional Variational Problems Depending on Indefinite Integrals and with Delay
    Ricardo Almeida
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 1515 - 1528
  • [4] Fractional Variational Problems Depending on Indefinite Integrals and with Delay
    Almeida, Ricardo
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (04) : 1515 - 1528
  • [5] A generalized fractional variational problem depending on indefinite integrals: Euler-Lagrange equation and numerical solution
    Almeida, Ricardo
    Khosravian-Arab, Hassan
    Shamsi, Mostafa
    JOURNAL OF VIBRATION AND CONTROL, 2013, 19 (14) : 2177 - 2186
  • [6] A generalized fractional variational problem depending on indefinite integrals: Euler-Lagrange equation and numerical solution
    Almeida, Ricardo
    Khosravian-Arab, Hassan
    Shamsi, Mostafa
    JVC/Journal of Vibration and Control, 2013, 19 (14): : 2177 - 2186
  • [7] A new operational approach for solving fractional variational problems depending on indefinite integrals
    Ezz-Eldien, S. S.
    Doha, E. H.
    Bhrawy, A. H.
    El-Kalaawy, A. A.
    Machado, J. A. T.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 57 : 246 - 263
  • [8] General fractional variational problem depending on indefinite integrals
    Sayevand, K.
    Rostami, M. R.
    NUMERICAL ALGORITHMS, 2016, 72 (04) : 959 - 987
  • [9] General fractional variational problem depending on indefinite integrals
    K. Sayevand
    M. R. Rostami
    Numerical Algorithms, 2016, 72 : 959 - 987
  • [10] A numerical approach for a category of piecewise fractional variational problems depending on an indefinite integral
    Heydari, M. H.
    Baleanu, D.
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 106 : 594 - 610