A numerical approach for a category of piecewise fractional variational problems depending on an indefinite integral

被引:1
|
作者
Heydari, M. H. [1 ]
Baleanu, D. [2 ,3 ]
机构
[1] Shiraz Univ Technol, Dept Math, Shiraz, Iran
[2] Lebanese Amer Univ, Dept Comp Sci & Math, 13-5053, Beirut, Lebanon
[3] Inst Space Sci, R-76900 Magurele, Romania
关键词
Piecewise fractional derivative; Piecewise fractional variational problems; Piecewise Chebyshev cardinal functions; Piecewise fractional derivative operational; matrix;
D O I
10.1016/j.aej.2024.08.051
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The primary focus of this study is to introduce some kinds of piecewise fractional derivatives (PFDs). These derivatives are defined using fractional derivatives in both the Atangana-Baleanu and Caputo senses. They are considered to generate a novel collection of fractional variational problems that rely on an indefinite integral. A numerical method established on the piecewise Chebyshev cardinal functions (as a suitable family of basis functions for such situations) is utilized to solve these problems. To this end, some operational matrices for PFDs of the expressed cardinal functions are derived and used to generate the presented method. Using the proposed technique, solving the desired problems is converted into solving associated algebraic systems. The effectiveness of the procedure is checked by solving some illustrative examples.
引用
收藏
页码:594 / 610
页数:17
相关论文
共 50 条
  • [1] Numerical Methods for Fractional Variational Problems Depending on Indefinite Integrals
    Wang, Dongling
    Xiao, Aiguo
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2013, 8 (02):
  • [2] Fractional variational problems depending on indefinite integrals
    Almeida, Ricardo
    Pooseh, Shakoor
    Torres, Delfim F. M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (03) : 1009 - 1025
  • [3] Fractional Variational Problems Depending on Indefinite Integrals and with Delay
    Almeida, Ricardo
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (04) : 1515 - 1528
  • [4] Fractional Variational Problems Depending on Indefinite Integrals and with Delay
    Ricardo Almeida
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 1515 - 1528
  • [5] A new operational approach for solving fractional variational problems depending on indefinite integrals
    Ezz-Eldien, S. S.
    Doha, E. H.
    Bhrawy, A. H.
    El-Kalaawy, A. A.
    Machado, J. A. T.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 57 : 246 - 263
  • [6] Piecewise numerical approach for solving piecewise fractional optimal control and variational problems
    Dehestani, Haniye
    Ordokhani, Yadollah
    Razzaghi, Mohsen
    NUMERICAL ALGORITHMS, 2025,
  • [7] Numerical solution of fractional variational problems depending on indefinite integrals using transcendental Bernstein series
    Hassani, Hossein
    Avazzadeh, Zakieh
    Tenreiro Machado, Jose Antonio
    Naraghirad, Eskandar
    JOURNAL OF VIBRATION AND CONTROL, 2019, 25 (13) : 1930 - 1944
  • [8] General fractional variational problem depending on indefinite integrals
    Sayevand, K.
    Rostami, M. R.
    NUMERICAL ALGORITHMS, 2016, 72 (04) : 959 - 987
  • [9] General fractional variational problem depending on indefinite integrals
    K. Sayevand
    M. R. Rostami
    Numerical Algorithms, 2016, 72 : 959 - 987
  • [10] A generalized fractional variational problem depending on indefinite integrals: Euler-Lagrange equation and numerical solution
    Almeida, Ricardo
    Khosravian-Arab, Hassan
    Shamsi, Mostafa
    JOURNAL OF VIBRATION AND CONTROL, 2013, 19 (14) : 2177 - 2186