Using the bootstrap for statistical inference on random graphs

被引:10
|
作者
Thompson, Mary E. [1 ]
Ramirez, Lilia L. Ramirez [2 ,3 ]
Lyubchich, Vyacheslav [4 ]
Gel, Yulia R. [5 ]
机构
[1] Univ Waterloo, Waterloo, ON N2L 3G1, Canada
[2] ITAM, Mexico City, DF, Mexico
[3] Ctr Invest Matemat CIMAT, Mexico City, DF, Mexico
[4] Univ Maryland, Ctr Environm Sci, College Pk, MD USA
[5] Univ Texas Dallas, Richardson, TX 75083 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Bootstrap; Finite-sample inference; goodness-of-fit; networks; nonparametric methods; sampling; NETWORKS;
D O I
10.1002/cjs.11271
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we propose a new nonparametric approach to network inference that may be viewed as a fusion of block sampling procedures for temporally and spatially dependent processes with the classical network methodology. We develop estimation and uncertainty quantification procedures for network mean degree using a patchwork sample and nonparametric bootstrap, under the assumption of unknown degree distribution. We provide a heuristic justification of asymptotic properties of the proposed patchwork sampling and present cross-validation methodology for selecting an optimal patch size. We validate the new patchwork bootstrap on simulated networks with short- and long-tailed mean degree distributions, and revisit the Erdos collaboration data to illustrate the proposed methodology. The Canadian Journal of Statistics 44: 3-24; 2016 (c) 2015 Statistical Society of Canada Resume Les auteurs proposent une approche non parametrique pour l'inference dans les reseaux qui peut etre decrite comme une fusion entre la methodologie classique pour les reseaux et des procedures d'echantillonnage par bloc pour des processus presentant une dependance spatiale et temporelle. Ils developpent des procedures permettant d'estimer le degre moyen du reseau et d'en mesurer l'incertitude grace a l'echantillonnage en mosai que et au bootstrap non parametrique, sous l'hypothese que la distribution du degre est inconnue. Les auteurs presentent une justification heuristique des proprietes asymptotiques de l'echantillonnage en mosai que propose et decrivent une methodologie de validation croisee afin de choisir la taille optimale des pieces de la mosai que. Ils valident le bootstrap pour la mosai que en simulant des reseaux dont la distribution du degre moyen presente des queues lourdes ou legeres. Ils illustrent egalement leur methodologie a l'aide des donnees de collaboration d'Erdos. La revue canadienne de statistique 44: 3-24; 2016 (c) 2015 Societe statistique du Canada
引用
收藏
页码:3 / 24
页数:22
相关论文
共 50 条
  • [41] Linear statistical inference for random fuzzy data
    Nather, W
    STATISTICS, 1997, 29 (03) : 221 - 240
  • [42] Statistical inference in a random coefficient panel model
    Horvath, Lajos
    Trapani, Lorenzo
    JOURNAL OF ECONOMETRICS, 2016, 193 (01) : 54 - 75
  • [43] STATISTICAL-INFERENCE OF SPATIAL RANDOM FUNCTIONS
    FEINERMAN, E
    DAGAN, G
    BRESLER, E
    WATER RESOURCES RESEARCH, 1986, 22 (06) : 935 - 942
  • [44] STATISTICAL INFERENCE OF SPATIAL RANDOM FUNCTIONS.
    Feinerman, E.
    Dagan, G.
    Bresler, E.
    Water Resources Research, 1986, 22 (06): : 935 - 942
  • [45] Bootstrap inference when using multiple imputation
    Schomaker, Michael
    Heumann, Hristian
    STATISTICS IN MEDICINE, 2018, 37 (14) : 2252 - 2266
  • [46] Bootstrap methods for statistical inference from stereological estimates of volume fraction
    Mattfeldt, T
    Fleischer, F
    JOURNAL OF MICROSCOPY-OXFORD, 2005, 218 : 160 - 170
  • [47] Distributed inference for the quantile regression model based on the random weighted bootstrap
    Xiao, Peiwen
    Liu, Xiaohui
    Li, Anna
    Pan, Guangming
    INFORMATION SCIENCES, 2024, 680
  • [48] Changepoint Inference for Erdos-Renyi Random Graphs
    Yudovina, Elena
    Banerjee, Moulinath
    Michailidis, George
    STOCHASTIC MODELS, STATISTICS AND THEIR APPLICATIONS, 2015, 122 : 197 - 205
  • [49] A PHASE TRANSITION REGARDING THE EVOLUTION OF BOOTSTRAP PROCESSES IN INHOMOGENEOUS RANDOM GRAPHS
    Fountoulakis, Nikolaos
    Kang, Mihyun
    Koch, Christoph
    Makai, Tamas
    ANNALS OF APPLIED PROBABILITY, 2018, 28 (02): : 990 - 1051
  • [50] On random graphs and the statistical mechanics of granular matter
    Berg, J
    Mehta, A
    EUROPHYSICS LETTERS, 2001, 56 (06): : 784 - 790