Using the bootstrap for statistical inference on random graphs

被引:10
|
作者
Thompson, Mary E. [1 ]
Ramirez, Lilia L. Ramirez [2 ,3 ]
Lyubchich, Vyacheslav [4 ]
Gel, Yulia R. [5 ]
机构
[1] Univ Waterloo, Waterloo, ON N2L 3G1, Canada
[2] ITAM, Mexico City, DF, Mexico
[3] Ctr Invest Matemat CIMAT, Mexico City, DF, Mexico
[4] Univ Maryland, Ctr Environm Sci, College Pk, MD USA
[5] Univ Texas Dallas, Richardson, TX 75083 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Bootstrap; Finite-sample inference; goodness-of-fit; networks; nonparametric methods; sampling; NETWORKS;
D O I
10.1002/cjs.11271
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we propose a new nonparametric approach to network inference that may be viewed as a fusion of block sampling procedures for temporally and spatially dependent processes with the classical network methodology. We develop estimation and uncertainty quantification procedures for network mean degree using a patchwork sample and nonparametric bootstrap, under the assumption of unknown degree distribution. We provide a heuristic justification of asymptotic properties of the proposed patchwork sampling and present cross-validation methodology for selecting an optimal patch size. We validate the new patchwork bootstrap on simulated networks with short- and long-tailed mean degree distributions, and revisit the Erdos collaboration data to illustrate the proposed methodology. The Canadian Journal of Statistics 44: 3-24; 2016 (c) 2015 Statistical Society of Canada Resume Les auteurs proposent une approche non parametrique pour l'inference dans les reseaux qui peut etre decrite comme une fusion entre la methodologie classique pour les reseaux et des procedures d'echantillonnage par bloc pour des processus presentant une dependance spatiale et temporelle. Ils developpent des procedures permettant d'estimer le degre moyen du reseau et d'en mesurer l'incertitude grace a l'echantillonnage en mosai que et au bootstrap non parametrique, sous l'hypothese que la distribution du degre est inconnue. Les auteurs presentent une justification heuristique des proprietes asymptotiques de l'echantillonnage en mosai que propose et decrivent une methodologie de validation croisee afin de choisir la taille optimale des pieces de la mosai que. Ils valident le bootstrap pour la mosai que en simulant des reseaux dont la distribution du degre moyen presente des queues lourdes ou legeres. Ils illustrent egalement leur methodologie a l'aide des donnees de collaboration d'Erdos. La revue canadienne de statistique 44: 3-24; 2016 (c) 2015 Societe statistique du Canada
引用
收藏
页码:3 / 24
页数:22
相关论文
共 50 条
  • [31] SOME GRAPHS USEFUL FOR STATISTICAL-INFERENCE
    GUENTHER, WC
    THOMAS, PO
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1965, 60 (309) : 334 - 343
  • [32] Hierarchical Random Walk Inference in Knowledge Graphs
    Liu, Qiao
    Jiang, Liuyi
    Han, Minghao
    Liu, Yao
    Qin, Zhiguang
    SIGIR'16: PROCEEDINGS OF THE 39TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2016, : 445 - 454
  • [33] On Estimation and Inference in Latent Structure Random Graphs
    Athreya, Avanti
    Minh Tang
    Park, Youngser
    Priebe, Carey E.
    STATISTICAL SCIENCE, 2021, 36 (01) : 68 - 88
  • [34] Inference and Mutual Information on Random Factor Graphs
    Coja-Oghlan, Amin
    Hahn-Klimroth, Max
    Loick, Philipp
    Mueller, Noela
    Panagiotou, Konstantinos
    Pasch, Matija
    38TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2021), 2021, 187
  • [35] Random graphs for statistical pattern recognition
    Shannon, WD
    JOURNAL OF CLASSIFICATION, 2004, 21 (02) : 284 - 286
  • [36] Bootstrap Percolation and Diffusion in Random Graphs with Given Vertex Degrees
    Amini, Hamed
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [37] Statistical inference for measures of inequality with a cross-national bootstrap application
    Moran, Timothy Patrick
    SOCIOLOGICAL METHODS & RESEARCH, 2006, 34 (03) : 296 - 333
  • [38] Bootstrap Statistical Inference about the Regression Coefficients Based on Fuzzy Data
    Akbari, M. G.
    Mohammadalizadeh, R.
    Rezaei, M.
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2012, 14 (04) : 549 - 556
  • [39] Statistical inference about modality of random variable
    Baszczynska, Aleksandra
    Pekasiewicz, Dorota
    MATHEMATICAL METHODS IN ECONOMICS (MME 2014), 2014, : 19 - 24
  • [40] STATISTICAL-INFERENCE ON STATIONARY RANDOM FIELDS
    LARIMORE, WE
    PROCEEDINGS OF THE IEEE, 1977, 65 (06) : 961 - 970