Sparse approximate inverse preconditioning for dense linear systems arising in computational electromagnetics

被引:89
|
作者
Alleon, G
Benzi, M
Giraud, L
机构
[1] Aerospatiale, Dept Math & Phys, Parallel Comp Grp, F-92150 Suresnes, France
[2] CERFACS, Parallel Algorithms Project, F-31057 Toulouse, France
关键词
dense linear systems; preconditioning; sparse approximate inverses; complex symmetric matrices; scattering calculations; Krylov subspace methods; parallel computing;
D O I
10.1023/A:1019170609950
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the use of sparse approximate inverse preconditioners for the iterative solution of linear systems with dense complex coefficient matrices arising in industrial electromagnetic problems. An approximate inverse is computed via a Frobenius norm approach with a prescribed nonzero pattern. Some strategies for determining the nonzero pattern of an approximate inverse are described. The results of numerical experiments suggest that sparse approximate inverse preconditioning is a viable approach for the solution of large-scale dense linear systems on parallel computers.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [41] A parallel sparse approximate inverse preconditioning algorithm based on MPI and CUDA
    Wang, Yizhou
    Li, Wenhao
    Gao, Jiaquan
    BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 2021, 1 (01):
  • [42] Multigrid treatment and robustness enhancement for factored sparse approximate inverse preconditioning
    Kai, W
    Jun, Z
    APPLIED NUMERICAL MATHEMATICS, 2002, 43 (04) : 483 - 500
  • [43] Mixed-Precision Sparse Approximate Inverse Preconditioning Algorithm on GPU
    Chu, Xinyue
    IEEE ACCESS, 2023, 11 : 136410 - 136421
  • [44] Algebraic preconditioning versus direct solvers for dense linear systems as arising in crack propagation problems
    Bängtsson, E
    Neytcheva, M
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2005, 21 (02): : 73 - 81
  • [45] Approximate solution of dense linear systems
    Jericevic, Z
    CROATICA CHEMICA ACTA, 2005, 78 (04) : 601 - 615
  • [46] Parallel multilevel recursive approximate inverse techniques for solving general sparse linear systems
    Makaratzis, Antonios T.
    Filelis-Papadopoulos, Christos K.
    Gravvanis, George A.
    JOURNAL OF SUPERCOMPUTING, 2016, 72 (06): : 2259 - 2282
  • [47] A supernodal block factorized sparse approximate inverse for non-symmetric linear systems
    Massimiliano Ferronato
    Giorgio Pini
    Numerical Algorithms, 2018, 78 : 333 - 354
  • [48] Parallel multilevel recursive approximate inverse techniques for solving general sparse linear systems
    Antonios T. Makaratzis
    Christos K. Filelis-Papadopoulos
    George A. Gravvanis
    The Journal of Supercomputing, 2016, 72 : 2259 - 2282
  • [49] A supernodal block factorized sparse approximate inverse for non-symmetric linear systems
    Ferronato, Massimiliano
    Pini, Giorgio
    NUMERICAL ALGORITHMS, 2018, 78 (01) : 333 - 354
  • [50] Preconditioning for Underdetermined Linear Systems with Sparse Solutions
    Tsiligianni, Evaggelia
    Kondi, Lisimachos P.
    Katsaggelos, Aggelos K.
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (09) : 1239 - 1243