Sparse approximate inverse preconditioning for dense linear systems arising in computational electromagnetics

被引:89
|
作者
Alleon, G
Benzi, M
Giraud, L
机构
[1] Aerospatiale, Dept Math & Phys, Parallel Comp Grp, F-92150 Suresnes, France
[2] CERFACS, Parallel Algorithms Project, F-31057 Toulouse, France
关键词
dense linear systems; preconditioning; sparse approximate inverses; complex symmetric matrices; scattering calculations; Krylov subspace methods; parallel computing;
D O I
10.1023/A:1019170609950
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the use of sparse approximate inverse preconditioners for the iterative solution of linear systems with dense complex coefficient matrices arising in industrial electromagnetic problems. An approximate inverse is computed via a Frobenius norm approach with a prescribed nonzero pattern. Some strategies for determining the nonzero pattern of an approximate inverse are described. The results of numerical experiments suggest that sparse approximate inverse preconditioning is a viable approach for the solution of large-scale dense linear systems on parallel computers.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [21] Parallel sparse approximate preconditioners for the solution of large dense linear systems
    González, Patricia
    Pena, Tomás F.
    Cabaleiro, José C.
    Recent Advances in Applied and Theoretical Mathematics, 2000, : 50 - 55
  • [22] A short survey on preconditioning techniques for large-scale dense complex linear systems in electromagnetics
    Wang, Yin
    Lee, Jeonghwa
    Zhang, Jun
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2007, 84 (08) : 1211 - 1223
  • [23] Multilevel Inverse-Based Factorization Preconditioner for Solving Sparse Linear Systems in Electromagnetics
    Bu, Yiming
    Carpentieri, Bruno
    Shen, Zhaoli
    Huang, Tingzhu
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2018, 33 (02): : 160 - 163
  • [24] Multilevel Inverse-Based Factorization Preconditioner for Solving Sparse Linear Systems in Electromagnetics
    Bu, Yiming
    Carpentieri, Bruno
    Shen, Zhaoli
    Huang, Tingzhu
    2015 COMPUTATIONAL ELECTROMAGNETICS INTERNATIONAL WORKSHOP (CEM'15), 2015, : 1 - 3
  • [25] OPTIMIZED SPARSE APPROXIMATE INVERSE SMOOTHERS FOR SOLVING LAPLACIAN LINEAR SYSTEMS
    He, Yunhui
    Liu, Jun
    Wang, Xiang-Sheng
    arXiv, 2022,
  • [26] Optimized sparse approximate inverse smoothers for solving Laplacian linear systems
    He, Yunhui
    Liu, Jun
    Wang, Xiang-Sheng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 656 : 304 - 323
  • [27] Solving sparse linear systems with approximate inverse preconditioners on analog devices
    Kalantzis, Vasileios
    Gupta, Anshul
    Horesh, Lior
    Nowicki, Tomasz
    Squillante, Mark S.
    Wu, Chai Wah
    Gokmen, Tayfun
    Avron, Haim
    2021 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2021,
  • [28] Parallel Dynamic Sparse Approximate Inverse Preconditioning Algorithm on GPU
    Gao, Jiaquan
    Chu, Xinyue
    Wu, Xiaotong
    Wang, Jun
    He, Guixia
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (12) : 4723 - 4737
  • [29] Scalable parallel preconditioning with the sparse approximate inverse of triangular matrices
    Van Duin, ACN
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1999, 20 (04) : 987 - 1006
  • [30] HeuriSPAI: a heuristic sparse approximate inverse preconditioning algorithm on GPU
    Jiaquan Gao
    Xinyue Chu
    Yizhou Wang
    CCF Transactions on High Performance Computing, 2023, 5 : 160 - 170