Porous-Material-Based Composite Phase Change Materials for a Lithium-Ion Battery Thermal Management System

被引:23
|
作者
Fang, Min [1 ]
Zhou, Jianduo [1 ]
Fei, Hua [1 ]
Yang, Kai [2 ]
He, Ruiqiang [1 ]
机构
[1] Jiangxi Univ Sci & Technol, Sch Civil Engn & Surveying & Mapping Engn, Ganzhou 341000, Jiangxi, Peoples R China
[2] Jiangxi Univ Sci & Technol, Sch Chem & Chem Engn, Ganzhou 341000, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
METAL-ORGANIC FRAMEWORKS; LATENT-HEAT STORAGE; ENERGY-STORAGE; POWER BATTERY; PERFORMANCE; GRAPHENE; SIMULATION; CONDUCTIVITY; ENHANCEMENT; SILICA;
D O I
10.1021/acs.energyfuels.1c04444
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A battery thermal management system (BTMS)plays a significant role in the thermal safety of a power lithium-ionbattery. Research on phase change materials (PCMs) for a BTMShas drawn wide attention and has become the forefront of thisscientificfield. Several evident limitations exist in pure PCMs, suchas poor thermal conductivity and low structural stability, whileporous materials could reinforce PCMs for their superior thermalperformance and robustness. Most related existing reviews focusedon the thermal performances of a lithium-ion BTMS by differentcooling methods. However, the thermal properties of porousmaterials and those based composite phase change materials(CPCMs) have not been summarized, which have much influence on the thermal management effect of battery modules. Thus,research on porous-material-based CPCMs used for a lithium-ion BTMS were reviewed in this paper. The kinds of PCMs andporous materials commonly used in a lithium-ion BTMS were introduced, and the thermophysical properties and robustness ofporous-material-based CPCMs were systematically analyzed. Furthermore, the thermal management effects of a porous-material-based CPCM on a lithium-ion battery were summarized. We discussed the enhancement effects on PCMs and the advantages andlimitations of various porous materials commonly used in a lithium-ion BTMS. Finally, on the basis of the current research, thispaper concluded the requirement of porous material for a CPCM in a lithium-ion BTMS and the expected future research directionsof porous material, including looking for a potential porous carrier, intensifying heat transfer, and enhancing anti-vibrationperformance
引用
收藏
页码:4153 / 4173
页数:21
相关论文
共 50 条
  • [41] Experimental study on thermal management of lithium-ion battery with graphite powder based composite phase change materials covering the whole climatic range
    Wang, Zichen
    Du, Changqing
    Qi, Rui
    Wang, Yijin
    APPLIED THERMAL ENGINEERING, 2022, 216
  • [42] Thermal performance of nano-enhanced phase change material and air-based lithium-ion battery thermal management system: An experimental investigation
    Ranjan, Ravi
    Kumar, Rajan
    Srinivas, Tangellapalli
    JOURNAL OF ENERGY STORAGE, 2024, 82
  • [43] Experimental study on the hybrid carbon based phase change materials for thermal management performance of lithium-ion battery module
    Chen, Mingyi
    Cui, Yilin
    Ouyang, Dongxu
    Weng, Jingwen
    Liu, Jiahao
    Zhao, Luyao
    Wang, Jian
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (12) : 17247 - 17261
  • [44] Numerical investigation of lithium-ion battery thermal management using fins embedded in phase change materials
    Turkakar, Goker
    Hos, Ismail
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2023, 38 (02): : 1105 - 1116
  • [45] Experimental Analysis on the Thermal Management of Lithium-Ion Batteries Based on Phase Change Materials
    Chen, Mingyi
    Zhang, Siyu
    Wang, Guoyang
    Weng, Jingwen
    Ouyang, Dongxu
    Wu, Xiangyang
    Zhao, Luyao
    Wang, Jian
    APPLIED SCIENCES-BASEL, 2020, 10 (20): : 1 - 15
  • [46] Study on thermal aspects of lithium-ion battery packs with phase change material and air cooling system
    Yang, Tien-Fu
    Lin, Pei-Yi
    Lin, Cong-You
    Yan, Wei-Mon
    Rashidi, Saman
    CASE STUDIES IN THERMAL ENGINEERING, 2024, 53
  • [47] STUDY ON ANTI-LEAKAGE AND HIGH THERMAL CONDUCTIVITY COMPOSITE PHASE CHANGE MATERIAL FOR LITHIUM ION BATTERY THERMAL MANAGEMENT SYSTEM
    Wang, Yitian
    He, Wei
    Yang, Wen
    Xu, Zhao
    Li, Jingyuan
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (07): : 209 - 217
  • [48] Thermal optimization of a kirigami-patterned wearable lithium-ion battery based on a novel design of composite phase change material
    Yang, Mengzhu
    Wang, Hu
    Shuai, Wenquan
    Deng, Xinjian
    APPLIED THERMAL ENGINEERING, 2019, 161
  • [49] Performance improvement of a thermal management system for Lithium-ion power battery pack by the combination of phase change material and heat pipe
    Gao, Chen
    Sun, Kai
    Song, KeWei
    Zhang, Kun
    Hou, QingZhi
    JOURNAL OF ENERGY STORAGE, 2024, 82
  • [50] Numerical analysis of lithium-ion battery thermal management system using phase change material assisted by liquid cooling method
    Wang, R.
    Liang, Z.
    Souri, M.
    Esfahani, M. N.
    Jabbari, M.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 183