Porous-Material-Based Composite Phase Change Materials for a Lithium-Ion Battery Thermal Management System

被引:23
|
作者
Fang, Min [1 ]
Zhou, Jianduo [1 ]
Fei, Hua [1 ]
Yang, Kai [2 ]
He, Ruiqiang [1 ]
机构
[1] Jiangxi Univ Sci & Technol, Sch Civil Engn & Surveying & Mapping Engn, Ganzhou 341000, Jiangxi, Peoples R China
[2] Jiangxi Univ Sci & Technol, Sch Chem & Chem Engn, Ganzhou 341000, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
METAL-ORGANIC FRAMEWORKS; LATENT-HEAT STORAGE; ENERGY-STORAGE; POWER BATTERY; PERFORMANCE; GRAPHENE; SIMULATION; CONDUCTIVITY; ENHANCEMENT; SILICA;
D O I
10.1021/acs.energyfuels.1c04444
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A battery thermal management system (BTMS)plays a significant role in the thermal safety of a power lithium-ionbattery. Research on phase change materials (PCMs) for a BTMShas drawn wide attention and has become the forefront of thisscientificfield. Several evident limitations exist in pure PCMs, suchas poor thermal conductivity and low structural stability, whileporous materials could reinforce PCMs for their superior thermalperformance and robustness. Most related existing reviews focusedon the thermal performances of a lithium-ion BTMS by differentcooling methods. However, the thermal properties of porousmaterials and those based composite phase change materials(CPCMs) have not been summarized, which have much influence on the thermal management effect of battery modules. Thus,research on porous-material-based CPCMs used for a lithium-ion BTMS were reviewed in this paper. The kinds of PCMs andporous materials commonly used in a lithium-ion BTMS were introduced, and the thermophysical properties and robustness ofporous-material-based CPCMs were systematically analyzed. Furthermore, the thermal management effects of a porous-material-based CPCM on a lithium-ion battery were summarized. We discussed the enhancement effects on PCMs and the advantages andlimitations of various porous materials commonly used in a lithium-ion BTMS. Finally, on the basis of the current research, thispaper concluded the requirement of porous material for a CPCM in a lithium-ion BTMS and the expected future research directionsof porous material, including looking for a potential porous carrier, intensifying heat transfer, and enhancing anti-vibrationperformance
引用
下载
收藏
页码:4153 / 4173
页数:21
相关论文
共 50 条
  • [31] Impact of phase change material-based heatsinks on lithium-ion battery thermal management: A comprehensive review
    Wu, Wei
    Smaisim, Ghassan Fadhil
    Sajadi, S. Mohammad
    Fagiry, Moram A.
    Li, Zhixiong
    Shamseldin, Mohamed A.
    Aybar, Hikmet S.
    JOURNAL OF ENERGY STORAGE, 2022, 52
  • [32] Experimental study on phase change material based thermal management design with adjustable fins for lithium-ion battery
    Chen, Guanyi
    Shi, Yong
    Ye, Hanyang
    Kang, Hang
    APPLIED THERMAL ENGINEERING, 2023, 221
  • [33] Simulation and Optimization of Lithium-Ion Battery Thermal Management System Integrating Composite Phase Change Material, Flat Heat Pipe and Liquid Cooling
    Xin, Qianqian
    Yang, Tianqi
    Zhang, Hengyun
    Zeng, Juan
    Xiao, Jinsheng
    BATTERIES-BASEL, 2023, 9 (06):
  • [34] A lithium-ion battery-thermal-management design based on phase-change-material thermal storage and spray cooling
    Lei, Shurong
    Shi, Yong
    Chen, Guanyi
    APPLIED THERMAL ENGINEERING, 2020, 168
  • [35] Thermal management of lithium-ion battery in the presence of phase change material with nanoparticles considering thermal contact resistance
    Taghilou, Mohammad
    Mohammadi, Mohammad Saeed
    JOURNAL OF ENERGY STORAGE, 2022, 56
  • [36] Phase change material properties identification for the design of efficient thermal management system for cylindrical Lithium-ion battery module
    Napa, Nagaraju
    Agrawal, Manish Kumar
    Tamma, Bhaskar
    JOURNAL OF ENERGY STORAGE, 2024, 99
  • [37] A pourable, thermally conductive and electronic insulated phase change material for thermal management of lithium-ion battery
    Niu, Junyi
    Yuan, Wenhui
    Zhang, Zhengguo
    Gao, Xuenong
    CHEMICAL ENGINEERING JOURNAL, 2024, 489
  • [38] Numerical investigation on thermal management system for lithium ion battery using phase change material
    Bais, Aditya R.
    Subhedhar, Dattataraya G.
    Joshi, Nishith C.
    Panchal, Satyam
    MATERIALS TODAY-PROCEEDINGS, 2022, 66 : 1726 - 1733
  • [39] Thermal management of Lithium-ion battery pack through the application of flexible form-stable composite phase change materials
    Huang, Qiqiu
    Li, Xinxi
    Zhang, Guoqing
    Deng, Jian
    Wang, Changhong
    APPLIED THERMAL ENGINEERING, 2021, 183
  • [40] Numerical study of thermal management of pouch lithium-ion battery based on composite liquid-cooled phase change materials with honeycomb structure
    Liu, Zhikuan
    Xu, Gongqing
    Xia, Yonggao
    Tian, Shuang
    JOURNAL OF ENERGY STORAGE, 2023, 70