Fusing Spatial Attention with Spectral-Channel Attention Mechanism for Hyperspectral Image Classification via Encoder-Decoder Networks

被引:9
|
作者
Sun, Jun [1 ,2 ]
Zhang, Junbo [3 ]
Gao, Xuesong [1 ,2 ]
Wang, Mantao [3 ]
Ou, Dinghua [1 ,2 ]
Wu, Xiaobo [1 ,2 ]
Zhang, Dejun [4 ]
机构
[1] Sichuan Agr Univ, Coll Resources, Chengdu 611130, Peoples R China
[2] Minist Nat Resources, Key Lab Invest & Monitoring, Protect & Utilizat Cultivated Land Resources, Chengdu 611130, Peoples R China
[3] Sichuan Agr Univ, Coll Informat Engn, Yaan 625000, Peoples R China
[4] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
关键词
hyperspectral image classification; attention mechanism; transformer; RECURRENT NEURAL-NETWORKS; CNN;
D O I
10.3390/rs14091968
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In recent years, convolutional neural networks (CNNs) have been widely used in hyperspectral image (HSI) classification. However, feature extraction on hyperspectral data still faces numerous challenges. Existing methods cannot extract spatial and spectral-channel contextual information in a targeted manner. In this paper, we propose an encoder-decoder network that fuses spatial attention and spectral-channel attention for HSI classification from three public HSI datasets to tackle these issues. In terms of feature information fusion, a multi-source attention mechanism including spatial and spectral-channel attention is proposed to encode the spatial and spectral multi-channels contextual information. Moreover, three fusion strategies are proposed to effectively utilize spatial and spectral-channel attention. They are direct aggregation, aggregation on feature space, and Hadamard product. In terms of network development, an encoder-decoder framework is employed for hyperspectral image classification. The encoder is a hierarchical transformer pipeline that can extract long-range context information. Both shallow local features and rich global semantic information are encoded through hierarchical feature expressions. The decoder consists of suitable upsampling, skip connection, and convolution blocks, which fuse multi-scale features efficiently. Compared with other state-of-the-art methods, our approach has greater performance in hyperspectral image classification.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Spectral-spatial attention bilateral network for hyperspectral image classification
    Yang X.
    Chi Y.
    Zhou Y.
    Wang Y.
    National Remote Sensing Bulletin, 2023, 27 (11) : 2565 - 2578
  • [42] Hyperspectral Image Classification Using Spectral-Spatial Double-Branch Attention Mechanism
    Kang, Jianfang
    Zhang, Yaonan
    Liu, Xinchao
    Cheng, Zhongxin
    REMOTE SENSING, 2024, 16 (01)
  • [43] Spectral group attention networks for hyperspectral image classification with spectral separability analysis
    Liu, Qi
    Li, Zhengtao
    Shuai, Shuai
    Sun, Qizhen
    INFRARED PHYSICS & TECHNOLOGY, 2020, 108
  • [44] Land cover classification of synthetic aperture radar images based on encoder-decoder network with an attention mechanism
    Zheng, Nai-Rong
    Yang, Zi-An
    Shi, Xian-Zheng
    Zhou, Ruo-Yi
    Wang, Feng
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (01)
  • [45] Video Anomaly Detection Using Encoder-Decoder Networks with Video Vision Transformer and Channel Attention Blocks
    Kobayashi, Shimpei
    Hizukuri, Akiyoshi
    Nakayama, Ryohei
    2023 18TH INTERNATIONAL CONFERENCE ON MACHINE VISION AND APPLICATIONS, MVA, 2023,
  • [46] A fully convolutional network with channel and spatial attention for hyperspectral image classification
    Jiang, Gangwu
    Sun, Yifan
    Liu, Bing
    REMOTE SENSING LETTERS, 2021, 12 (12) : 1238 - 1249
  • [47] edaGAN: Encoder-Decoder Attention Generative Adversarial Networks for Multi-contrast MR Image Synthesis
    Dalmaz, Onat
    Saglam, Baturay
    Gonc, Kaan
    Cukur, Tolga
    2022 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ICEEE 2022), 2022, : 320 - 324
  • [48] Encoder-Decoder Neural Network with Attention Mechanism for Types Detection in Linked Data
    Hamel, Oussama
    Fareh, Messaouda
    PROCEEDINGS OF THE 2022 17TH CONFERENCE ON COMPUTER SCIENCE AND INTELLIGENCE SYSTEMS (FEDCSIS), 2022, : 733 - 739
  • [49] LAEDNet: A Lightweight Attention Encoder-Decoder Network for ultrasound medical image segmentation
    Zhou, Quan
    Wang, Qianwen
    Bao, Yunchao
    Kong, Lingjun
    Jin, Xin
    Ou, Weihua
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 99
  • [50] Spectral Feature Fusion Networks With Dual Attention for Hyperspectral Image Classification
    Li, Xian
    Ding, Mingli
    Pizurica, Aleksandra
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60