Fusing Spatial Attention with Spectral-Channel Attention Mechanism for Hyperspectral Image Classification via Encoder-Decoder Networks

被引:9
|
作者
Sun, Jun [1 ,2 ]
Zhang, Junbo [3 ]
Gao, Xuesong [1 ,2 ]
Wang, Mantao [3 ]
Ou, Dinghua [1 ,2 ]
Wu, Xiaobo [1 ,2 ]
Zhang, Dejun [4 ]
机构
[1] Sichuan Agr Univ, Coll Resources, Chengdu 611130, Peoples R China
[2] Minist Nat Resources, Key Lab Invest & Monitoring, Protect & Utilizat Cultivated Land Resources, Chengdu 611130, Peoples R China
[3] Sichuan Agr Univ, Coll Informat Engn, Yaan 625000, Peoples R China
[4] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
关键词
hyperspectral image classification; attention mechanism; transformer; RECURRENT NEURAL-NETWORKS; CNN;
D O I
10.3390/rs14091968
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In recent years, convolutional neural networks (CNNs) have been widely used in hyperspectral image (HSI) classification. However, feature extraction on hyperspectral data still faces numerous challenges. Existing methods cannot extract spatial and spectral-channel contextual information in a targeted manner. In this paper, we propose an encoder-decoder network that fuses spatial attention and spectral-channel attention for HSI classification from three public HSI datasets to tackle these issues. In terms of feature information fusion, a multi-source attention mechanism including spatial and spectral-channel attention is proposed to encode the spatial and spectral multi-channels contextual information. Moreover, three fusion strategies are proposed to effectively utilize spatial and spectral-channel attention. They are direct aggregation, aggregation on feature space, and Hadamard product. In terms of network development, an encoder-decoder framework is employed for hyperspectral image classification. The encoder is a hierarchical transformer pipeline that can extract long-range context information. Both shallow local features and rich global semantic information are encoded through hierarchical feature expressions. The decoder consists of suitable upsampling, skip connection, and convolution blocks, which fuse multi-scale features efficiently. Compared with other state-of-the-art methods, our approach has greater performance in hyperspectral image classification.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Unsupervised Encoder-Decoder Network Under Spatial and Spectral Guidance for Hyperspectral and Multispectral Image Fusion
    Wu, Huajing
    Zhang, Kefei
    Wu, Suqin
    Shi, Shuangshuang
    Bian, Chaofa
    Zhang, Minghao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [22] Spectral Spatial Neighborhood Attention Transformer for Hyperspectral Image Classification
    Arshad, Tahir
    Zhang, Junping
    Anyembe, Shibwabo C.
    Mehmood, Aamir
    CANADIAN JOURNAL OF REMOTE SENSING, 2024, 50 (01)
  • [23] Spectral and Spatial Global Context Attention for Hyperspectral Image Classification
    Li, Zhongwei
    Cui, Xingshuai
    Wang, Leiquan
    Zhang, Hao
    Zhu, Xue
    Zhang, Yajing
    REMOTE SENSING, 2021, 13 (04) : 1 - 24
  • [24] Spectral-Spatial Attention Network for Hyperspectral Image Classification
    Sun, Hao
    Zheng, Xiangtao
    Lu, Xiaoqiang
    Wu, Siyuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3232 - 3245
  • [25] CA-SegNet: A channel-attention encoder-decoder network for histopathological image segmentation
    He, Feng
    Wang, Weibo
    Ren, Lijuan
    Zhao, Yixuan
    Liu, Zhengjun
    Zhu, Yuemin
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 96
  • [26] Semisupervised Spatial-Spectral Feature Extraction With Attention Mechanism for Hyperspectral Image Classification
    Pu, Chunyu
    Huang, Hong
    Shi, Xu
    Wang, Tao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [27] Hybrid Attention-Based Encoder-Decoder Fully Convolutional Network for PolSAR Image Classification
    Fang, Zheng
    Zhang, Gong
    Dai, Qijun
    Xue, Biao
    Wang, Peng
    REMOTE SENSING, 2023, 15 (02)
  • [28] Underwater Image Enhancement Using Encoder-Decoder Scale Attention Network
    Lee, Ka-Ki
    Hsieh, Jun-Wei
    Hsieh, Yi-Kuan
    Hsieh, An-Ting
    2024 6TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND THE INTERNET, ICCCI 2024, 2024, : 101 - 106
  • [29] Encoder-decoder Network with Self-attention Module for Image Restoration
    Jin, Qing
    Yu, Qi
    Liu, Jiying
    Tan, Xintong
    THIRTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2021), 2022, 12083
  • [30] ATTENTION-BASED ENCODER-DECODER NETWORK FOR SINGLE IMAGE DEHAZING
    Gao, Shunan
    Zhu, Jinghua
    Xi, Heran
    2021 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2021,