GBS Operators of LupaAY-Durrmeyer Type Based on Polya Distribution

被引:32
|
作者
Agrawal, P. N. [1 ]
Ispir, Nurhayat [2 ]
Kajla, Arun [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
[2] Gazi Univ, Sci & Arts Fac, Dept Math, TR-06500 Ankara, Turkey
关键词
Lupas-Durrmeyer operators; B-continuous function; B-differentiable function; GBS operators; Polya distribution; mixed modulus of smoothness; STANCU TYPE; K-FUNCTIONALS; APPROXIMATION; SMOOTHNESS;
D O I
10.1007/s00025-015-0507-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study an extension of the bivariate LupaAY-Durrmeyer operators based on Polya distribution. For these operators we get a Voronovskaja type theorem and the order of approximation using Peetre's K-functional. Then, we construct the Generalized Boolean Sum operators of LupaAYaEuro"Durrmeyer type and estimate the degree of approximation in terms of the mixed modulus of smoothness.
引用
收藏
页码:397 / 418
页数:22
相关论文
共 50 条
  • [41] q- Lupas Kantorovich operators based on Polya distribution
    Agrawal P.N.
    Gupta P.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2018, 64 (1) : 1 - 23
  • [42] Approximation properties of Lupas–Kantorovich operators based on Polya distribution
    Agrawal P.N.
    Ispir N.
    Kajla A.
    Rendiconti del Circolo Matematico di Palermo Series 2, 2016, 65 (2): : 185 - 208
  • [43] Generalized Durrmeyer operators based on inverse Pólya–Eggenberger distribution
    Minakshi Dhamija
    Naokant Deo
    Ram Pratap
    Ana Maria Acu
    Afrika Matematika, 2022, 33
  • [44] On approximation properties of generalized Lupas type operators based on Polya distribution with Pochhammer k-symbol
    Gurel Yilmaz, Ovgu
    Aktas, Rabia
    Tasdelen, Fatma
    Olgun, Ali
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (02): : 338 - 361
  • [45] q-Szasz-Durrmeyer Type Operators Based on Dunkl Analogue
    Rao, Nadeem
    Wafi, Abdul
    Acu, Ana Maria
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (03) : 915 - 934
  • [46] Durrmeyer-Type Generalization of μ-Bernstein Operators
    Kajla, Arun
    Mohiuddine, S. A.
    Alotaibi, Abdullah
    FILOMAT, 2022, 36 (01) : 349 - 360
  • [47] Certain new classes of Durrmeyer type operators
    Govil, N. K.
    Gupta, Vijay
    Soybas, Danyal
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 225 : 195 - 203
  • [48] Durrmeyer type modification of generalized Baskakov operators
    Erencin, Aysegul
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (08) : 4384 - 4390
  • [49] ON THE DURRMEYER-TYPE OPERATORS FOR BIVARIATE FUNCTIONS
    P.Pych-Taberska
    Approximation Theory and Its Applications, 1994, (04) : 25 - 36
  • [50] Bezier-Bernstein-Durrmeyer type operators
    Kajla, Arun
    Acar, Tuncer
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 114 (01)