Superalgebras and algebras with involution: classifying varieties of quadratic growth

被引:2
|
作者
Bessades, D. C. L. [1 ]
dos Santos, R. B. [1 ]
Santos, M. L. O. [1 ]
Vieira, A. C. [1 ]
机构
[1] Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Matemat, Av Antonio Carlos 6627, Belo Horizonte, MG, Brazil
关键词
Algebra with involution; polynomial growth; polynomial identity; superalgebra;
D O I
10.1080/00927872.2021.1873354
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a field of characteristic zero. By a phi-algebra we mean a superalgebra or an algebra with involution over F: In the last years, the sequence of phi-codimensions {c(n)(phi)(A)}(n >= 1) of a phi-algebra A has been extensively studied. In this paper, we classify varieties generated by unitary phi-algebras having quadratic growth of phi-codimensions. As a consequence we obtain that a unitary phi-algebra with quadratic growth is T-phi-equivalent to a finite direct sum of minimal unitary phi-algebras with at most quadratic growth of the u-codimensions. In addition, we explicit all quadratic functions describing the u-codimension sequence of a unitary phi-algebra.
引用
收藏
页码:2476 / 2490
页数:15
相关论文
共 50 条
  • [41] Involution codimensions of finite dimensional algebras and exponential growth
    Giambruno, A
    Zaicev, M
    JOURNAL OF ALGEBRA, 1999, 222 (02) : 471 - 484
  • [43] δ-Derivations of Algebras and Superalgebras
    Kaygorodov, I.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ALGEBRA 2010: ADVANCES IN ALGEBRAIC STRUCTURES, 2012, : 374 - 380
  • [44] Quadratic automaton algebras and intermediate growth
    Iyudu, Natalia
    Shkarin, Stanislav
    JOURNAL OF COMBINATORIAL ALGEBRA, 2018, 2 (02) : 147 - 167
  • [45] The prime spectrum of algebras of quadratic growth
    Bell, Jason P.
    Smoktunowicz, Agata
    JOURNAL OF ALGEBRA, 2008, 319 (01) : 414 - 431
  • [46] JACOBSON RADICAL ALGEBRAS WITH QUADRATIC GROWTH
    Smoktunowicz, Agata
    Young, Alexander A.
    GLASGOW MATHEMATICAL JOURNAL, 2013, 55A : 135 - 147
  • [47] On growth of varieties of commutative linear algebras
    Mishchenko S.S.
    Journal of Mathematical Sciences, 2009, 163 (6) : 739 - 742
  • [48] Minimal varieties of algebras of exponential growth
    Giambruno, A
    Zaicev, M
    ADVANCES IN MATHEMATICS, 2003, 174 (02) : 310 - 323
  • [49] Minimal varieties of algebras of exponential growth
    Giambruno, A
    Zaicev, M
    ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 6 : 40 - 44
  • [50] Varieties of algebras with pseudoinvolution and polynomial growth
    Ioppolo, Antonio
    Martino, Fabrizio
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (11): : 2286 - 2304