Superalgebras and algebras with involution: classifying varieties of quadratic growth

被引:2
|
作者
Bessades, D. C. L. [1 ]
dos Santos, R. B. [1 ]
Santos, M. L. O. [1 ]
Vieira, A. C. [1 ]
机构
[1] Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Matemat, Av Antonio Carlos 6627, Belo Horizonte, MG, Brazil
关键词
Algebra with involution; polynomial growth; polynomial identity; superalgebra;
D O I
10.1080/00927872.2021.1873354
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a field of characteristic zero. By a phi-algebra we mean a superalgebra or an algebra with involution over F: In the last years, the sequence of phi-codimensions {c(n)(phi)(A)}(n >= 1) of a phi-algebra A has been extensively studied. In this paper, we classify varieties generated by unitary phi-algebras having quadratic growth of phi-codimensions. As a consequence we obtain that a unitary phi-algebra with quadratic growth is T-phi-equivalent to a finite direct sum of minimal unitary phi-algebras with at most quadratic growth of the u-codimensions. In addition, we explicit all quadratic functions describing the u-codimension sequence of a unitary phi-algebra.
引用
收藏
页码:2476 / 2490
页数:15
相关论文
共 50 条
  • [21] On algebras and superalgebras with linear codimension growth
    Giambruno, A
    La Mattina, D
    Misso, P
    GROUPS, RINGS AND GROUP RINGS, 2006, 248 : 173 - 182
  • [22] Growth of some varieties of Lie superalgebras
    Zaicev, M. V.
    Mishchenko, S. P.
    IZVESTIYA MATHEMATICS, 2007, 71 (04) : 657 - 672
  • [23] Minimal varieties of PI-algebras with graded involution
    Benanti, F. S.
    Di Vincenzo, O. M.
    Valenti, A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 699 : 459 - 507
  • [24] Algebras with involution with linear codimension growth
    La Mattina, D.
    Misso, P.
    JOURNAL OF ALGEBRA, 2006, 305 (01) : 270 - 291
  • [25] GROWTH OF CENTRAL POLYNOMIALS OF ALGEBRAS WITH INVOLUTION
    Martino, Fabrizio
    Rizzo, Carla
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (01) : 429 - 453
  • [26] On the growth of varieties of algebras
    Mishchenko, S.
    Valenti, A.
    GROUPS, RINGS AND GROUP RINGS, 2009, 499 : 229 - 243
  • [27] A criterion for polynomial growth of varieties of Lie superalgebras
    Zaitsev, MV
    Mishchenko, SP
    IZVESTIYA MATHEMATICS, 1998, 62 (05) : 953 - 967
  • [28] Classifying the Minimal Varieties of Polynomial Growth
    Giambruno, Antonio
    La Mattina, Daniela
    Zaicev, Mikhail
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (03): : 625 - 640
  • [29] On minimal varieties of quadratic growth
    Vieira, A. C.
    Jorge, S. M. Alves
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 418 (2-3) : 925 - 938
  • [30] Varieties with at most quadratic growth
    Mishchenko, S.
    Valenti, A.
    ISRAEL JOURNAL OF MATHEMATICS, 2010, 178 (01) : 209 - 228