Monotone additive matrix transformations

被引:3
|
作者
Guterman, A. E. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
matrix partial order; monotone transformation; partially ordered set; Lewner order; Hartwig order; Drazin order; diamond order;
D O I
10.1134/S0001434607050057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate additive transformations on the space of real or complex matrices that are monotone with respect to any admissible partial order relation. A complete characterization of these transformations is obtained. In the real case, we show that Such transformations are linear and that all nonzero monotone transformations are bijective. As a corollary, we characterize all additive transformations that are monotone with respect to certain classical matrix order relations, in particular, with respect to the Drazin order, left and right *-orders, and the diamond order.
引用
收藏
页码:609 / 619
页数:11
相关论文
共 50 条
  • [31] MONOTONE TRANSFORMATIONS AND LIMIT LAWS - BALKEMA,AA
    SEN, PK
    TECHNOMETRICS, 1974, 16 (04) : 635 - 635
  • [32] Linear transformations monotone with respect to the Drazin *-order
    Alieva, AA
    RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (06) : 1191 - 1193
  • [33] Linear transformations of monotone functions on the discrete cube
    Keller, Nathan
    Pilpel, Haran
    DISCRETE MATHEMATICS, 2009, 309 (12) : 4210 - 4214
  • [34] On vertices of the k-additive monotone core
    Miranda, Pedro
    Grabisch, Michel
    PROCEEDINGS OF THE JOINT 2009 INTERNATIONAL FUZZY SYSTEMS ASSOCIATION WORLD CONGRESS AND 2009 EUROPEAN SOCIETY OF FUZZY LOGIC AND TECHNOLOGY CONFERENCE, 2009, : 76 - 81
  • [35] Pathwise Duals of Monotone and Additive Markov Processes
    Anja Sturm
    Jan M. Swart
    Journal of Theoretical Probability, 2018, 31 : 932 - 983
  • [36] Pathwise Duals of Monotone and Additive Markov Processes
    Sturm, Anja
    Swart, Jan M.
    JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (02) : 932 - 983
  • [37] Additive monotone regression in high and lower dimensions
    Engebretsen, Solveig
    Glad, Ingrid K.
    STATISTICS SURVEYS, 2019, 13 : 1 - 51
  • [38] A SANDWICH THEOREM FOR MONOTONE ADDITIVE-FUNCTIONS
    PLAPPERT, P
    SEMIGROUP FORUM, 1995, 51 (03) : 347 - 355
  • [39] An Additive Subfamily of Enlargements of a Maximally Monotone Operator
    Burachik, Regina S.
    Enrique Martinez-Legaz, Juan
    Rezaie, Mahboubeh
    Thera, Michel
    SET-VALUED AND VARIATIONAL ANALYSIS, 2015, 23 (04) : 643 - 665
  • [40] ADDITIVE FUNCTIONS WHICH ARE MONOTONE ON A RARE SET
    FREUD, R
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1978, 31 (1-2): : 151 - 156