Linear transformations of monotone functions on the discrete cube

被引:3
|
作者
Keller, Nathan [1 ]
Pilpel, Haran [1 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, Israel
关键词
Influences; Boolean functions; Fourier-Walsh expansion; Discrete Fourier analysis; BOOLEAN FUNCTIONS;
D O I
10.1016/j.disc.2008.12.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a function f : {0. 1}(n) -> R and an invertible linear transformation L is an element of GL(n)(2), we consider the function Lf : {0, 1}(n) -> R defined by Lf (x) = f (Lx). We raise two conjectures: First, we conjecture that if f is Boolean and monotone then I(Lf) >= I(f), where I(f) is the total influence off. Second. we conjecture that if both f and L(f) are monotone, then f = L(f) (up to a permutation of the coordinates). We prove the second conjecture in the case where L is upper triangular. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:4210 / 4214
页数:5
相关论文
共 50 条
  • [1] MONOTONE TRANSFORMATIONS AND DIFFERENTIAL PROPERTIES OF FUNCTIONS
    KAPLAN, LI
    SLOBODNIK, SG
    [J]. MATHEMATICAL NOTES, 1977, 22 (5-6) : 971 - 978
  • [2] Monotone linear transformations on matrices are invertible
    Alieva, AA
    Guterman, AE
    [J]. COMMUNICATIONS IN ALGEBRA, 2005, 33 (09) : 3335 - 3352
  • [3] MONOTONE FUNCTIONS ON LINEAR LATTICES
    ELLIS, HW
    NAKANO, H
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1963, 15 (02): : 226 - &
  • [4] FOURIER TRANSFORMATIONS OF MONOTONE FUNCTIONS AND DISTRIBUTION FUNCTION
    GULISASH.AB
    [J]. DOKLADY AKADEMII NAUK SSSR, 1971, 196 (06): : 1259 - &
  • [5] New transformations of aggregation functions based on monotone systems of functions
    Jin, LeSheng
    Mesiar, Radko
    Kalina, Martin
    Spirkova, Jana
    Borkotokey, Surajit
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2020, 118 : 79 - 95
  • [6] Monotone Linear Transformations on Matrices over Semirings
    Guterman A.E.
    Kreines E.M.
    Wang Q.-W.
    [J]. Journal of Mathematical Sciences, 2018, 233 (5) : 675 - 686
  • [7] Linear transformations monotone with respect to the Drazin *-order
    Alieva, AA
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (06) : 1191 - 1193
  • [8] On Fitzpatrick functions of monotone linear operators
    Radjabalipour, Mehdi
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (02) : 950 - 958
  • [9] On the Fourier tails of bounded functions over the discrete cube
    Irit Dinur
    Ehud Friedgut
    Guy Kindler
    Ryan O’Donnell
    [J]. Israel Journal of Mathematics, 2007, 160 : 389 - 412
  • [10] On the Fourier tails of bounded functions over the discrete cube
    Dinur, Irit
    Friedgut, Ehud
    Kindler, Guy
    O'Donnell, Ryan
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2007, 160 (01) : 389 - 412