Linear transformations of monotone functions on the discrete cube

被引:3
|
作者
Keller, Nathan [1 ]
Pilpel, Haran [1 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, Israel
关键词
Influences; Boolean functions; Fourier-Walsh expansion; Discrete Fourier analysis; BOOLEAN FUNCTIONS;
D O I
10.1016/j.disc.2008.12.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a function f : {0. 1}(n) -> R and an invertible linear transformation L is an element of GL(n)(2), we consider the function Lf : {0, 1}(n) -> R defined by Lf (x) = f (Lx). We raise two conjectures: First, we conjecture that if f is Boolean and monotone then I(Lf) >= I(f), where I(f) is the total influence off. Second. we conjecture that if both f and L(f) are monotone, then f = L(f) (up to a permutation of the coordinates). We prove the second conjecture in the case where L is upper triangular. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:4210 / 4214
页数:5
相关论文
共 50 条