Monotone Linear Transformations on Matrices over Semirings

被引:0
|
作者
Guterman A.E. [1 ]
Kreines E.M. [1 ]
Wang Q.-W. [2 ]
机构
[1] Moscow State University, Moscow
[2] Shanghai University, Shanghai
基金
俄罗斯基础研究基金会; 中国国家自然科学基金;
关键词
D O I
10.1007/s10958-018-3955-1
中图分类号
学科分类号
摘要
We characterize linear transformations on matrices over commutative antinegative semirings that are monotone with respect to minus, star, and sharp partial orders. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:675 / 686
页数:11
相关论文
共 50 条
  • [1] Monotone linear transformations on matrices are invertible
    Alieva, AA
    Guterman, AE
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (09) : 3335 - 3352
  • [2] Linear preservers for matrices over a class of semirings
    Deng, Weina
    Ren, Miaomiao
    Yu, Baomin
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21): : 6830 - 6845
  • [3] Linear preservers of term ranks of matrices over semirings
    Kang, Kyung-Tae
    Song, Seok-Zun
    Beasley, LeRoy B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (07) : 1850 - 1862
  • [4] LINEAR OPERATORS THAT PRESERVE PERIMETERS OF MATRICES OVER SEMIRINGS
    Song, Seok-Zun
    Kang, Kyung-Tae
    Beasley, LeRoy B.
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (01) : 113 - 123
  • [5] Matrices over semirings
    Ghosh, S
    INFORMATION SCIENCES, 1996, 90 (1-4) : 221 - 230
  • [6] Linear Operators that Preserve Term Ranks of Matrices over Semirings
    Beasley, Leroy B.
    Song, Seok-Zun
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2014, 37 (03) : 719 - 725
  • [7] Factorizations of matrices over semirings
    Cho, HH
    Kim, SR
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 373 : 289 - 296
  • [8] The bideterminants of matrices over semirings
    Xue-ping Wang
    Qian-yu Shu
    Soft Computing, 2014, 18 : 729 - 742
  • [9] Determinants of matrices over semirings
    Tan, Yi-Jia
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (04): : 498 - 517
  • [10] The bideterminants of matrices over semirings
    Wang, Xue-ping
    Shu, Qian-yu
    SOFT COMPUTING, 2014, 18 (04) : 729 - 742