Effect of thermal annealing sequence on the crystal phase of HfO2 and charge trap property of Al2O3/HfO2/SiO2 stacks

被引:5
|
作者
Na, Heedo [1 ]
Jeong, Juyoung [1 ]
Lee, Jimin [1 ]
Shin, Hyunsu [1 ]
Lee, Sunghoon [2 ]
Sohn, Hyunchul [1 ]
机构
[1] Yonsei Univ, Dept Mat Sci & Engn, 50 Yonsei Ro, Seoul 03722, South Korea
[2] SK Hynix Inc, Res & Dev Div, 2091 Gyeongchung Daero, Icheon Si 17336, Gyeonggi Do, South Korea
关键词
ALD HfO2; Charge trapping; NAND flash memory; HfO2 crystal phase; Memory window; NONVOLATILE MEMORY DEVICE; FLASH MEMORY; FILMS; LAYER; AL2O3; OXIDE; STABILITY; ZRO2;
D O I
10.1016/j.cap.2017.07.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, we investigated the effect of a post annealing sequence on the HfO2 crystal phase and the memory window of charge trap devices with TiN-Al2O3-HfO2-SiO2-Si stacks. The charge trap dielectrics of HfO2 were deposited by atomic layer deposition and were annealed in an oxygen environment with or without Al2O3 blocking oxides. X-ray diffraction analysis showed that, after thermal annealing, the predominant crystal phase of HfO2 is divided into tetragonal and monoclinic phase depending on the presence or absence of Al2O3 blocking oxide. In addition, deconvolution of X-ray diffraction spectra showed that, with increasing annealing temperature, the fraction of the tetragonal phase in the HfO2 film was enhanced with the Al2O3 blocking oxide, while it was reduced without the Al2O3 blocking oxide. Finally, measurements of program/erase and increase-step-pulse programming showed that the charge trap efficiency and the memory window of the charge trap devices increased with decreasing fraction of tetragonal HfO2. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1361 / 1366
页数:6
相关论文
共 50 条
  • [21] Electrical and Charge Trapping Properties of HfO2/Al2O3 Multilayer Dielectric Stacks
    Davidovic, V.
    Paskaleva, A.
    Spassov, D.
    Guziewicz, E.
    Krajewski, T.
    Golubovic, S.
    Djoric-Veljkovic, S.
    Manic, I.
    Dankovic, D.
    Stojadinovic, N.
    2017 IEEE 30TH INTERNATIONAL CONFERENCE ON MICROELECTRONICS (MIEL), 2017, : 143 - 146
  • [22] Theoretical and experimental investigation of thermal stability of HfO2/Si and HfO2/SiO2 interfaces
    Liu, CL
    Stoker, M
    Hegde, RI
    Rai, RS
    Tobin, PJ
    MODELING AND NUMERICAL SIMULATION OF MATERIALS BEHAVIOR AND EVOLUTION, 2002, 731 : 281 - 284
  • [23] Thermal stability of a HfO2/SiO2 interface
    Ikarashi, N
    Watanabe, K
    Masuzaki, K
    Nakagawa, T
    APPLIED PHYSICS LETTERS, 2006, 88 (10)
  • [24] Modeling of tunneling currents through HfO2 and (HfO2)x (Al2O3)1-x gate stacks
    Hou, YT
    Li, MF
    Yu, HY
    Kwong, DL
    IEEE ELECTRON DEVICE LETTERS, 2003, 24 (02) : 96 - 98
  • [25] Impact of gate materials on positive charge formation in HfO2/SiO2 stacks
    Zhao, C. Z.
    Zhang, J. F.
    Zahid, M. B.
    Groeseneken, G.
    Degraeve, R.
    De Gendt, S.
    APPLIED PHYSICS LETTERS, 2006, 89 (02)
  • [26] Characterization of the annealing impact on La2O3/HfO2 and HfO2/La2O3 stacks for MOS applications
    Rebiscoul, D.
    Favier, S.
    Barnes, J-P.
    Maes, J. W.
    Martin, F.
    MICROELECTRONIC ENGINEERING, 2010, 87 (03) : 278 - 281
  • [27] Thermal stability comparison of TaN on HfO2 and Al2O3
    Kwon, Jinhee
    Chabal, Yves J.
    APPLIED PHYSICS LETTERS, 2010, 96 (15)
  • [28] Diffusion reaction of oxygen in HfO2/SiO2/Si stacks
    Ferrari, S.
    Fanciulli, M.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (30): : 14905 - 14910
  • [29] Impact of γ Radiation on Charge Trapping Properties of Nanolaminated HfO2/Al2O3 ALD Stacks
    Spassov, D.
    Paskaleva, A.
    Davidovic, V.
    Djoric-Vehkovic, S.
    Stankovic, S.
    Stojadinovic, N.
    Ivanov, Tz
    Stanchev, T.
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON MICROELECTRONICS (MIEL 2019), 2019, : 59 - 62
  • [30] Flicker noise characteristics of MOSFETs with HfO2, HfAIOx, and Al2O3/HfO2 gate dielectrics
    Devireddy, SP
    Min, B
    Çelik-Butler, Z
    Wang, F
    Zlotnicka, A
    Tseng, HH
    Tobin, PJ
    NOISE IN DEVICES AND CIRCUITS III, 2005, 5844 : 208 - 217